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Abstract

Consider a group G of order M acting unitarily on a real inner product
space V . We show that the sorting based embedding obtained by applying
a general linear map α : R

M×N → R
D to the invariant map βΦ : V →

R
M×N given by sorting the coorbits (〈v, gφi〉V )g∈G, where (φi)

N
i=1 ∈ V ,

satisfies a bi-Lipschitz condition if and only if it separates orbits.
Additionally, we note that any invariant Lipschitz continuous map

(into a Hilbert space) factors through the sorting based embedding, and
that any invariant continuous map (into a locally convex space) factors
through the sorting based embedding as well.

1 Introduction

Suppose that a specific learning task with input space V is invariant under the
action of a group G. Then, it makes sense to construct a class of hypotheses
that factor into two parts: i. a group invariant part h : V → Vint, where Vint is
some intermediate space, and ii. an “optimisable” part g : Vint → W , where W
denotes the space of all possible outputs. In this way, we can use an optimisation
algorithm to find g in such a way that f = g ◦ h fits some training data, and
the above construction ascertains that f : V → W is invariant under the action
of G.

So, introducing the equivalence relation v ∼ w : ⇐⇒ ∃g ∈ G : v = gw on
V and assuming that V has a norm ‖·‖V , our goal becomes to construct maps
h : V → R

D, where D ∈ N is as small as possible, and h satisfies the properties:

1. Invariance. h(v) = h(w) for all v, w ∈ V such that v ∼ w.

2. Orbit separation. v ∼ w for all v, w ∈ V such that h(v) = h(w).

3. Bi-Lipschitz condition. There exist constants 0 < c ≤ C such that

c dist(v, w) ≤ ‖h(v)− h(w)‖2 ≤ C dist(v, w), v, w ∈ V. (1)

Here and throughout the paper, dist(v, w) := ming∈G‖v − gw‖V denotes the
natural metric on the quotient space V/∼.

The approach described above is an instance of invariant machine learning:
techniques designed to ensure that hypotheses are robust to specific changes in
the input data. More precisely, it is a special form of feature engineering, where
raw data is transformed into a more useful set of inputs.
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Feature transforms have been suggested in computer vision, for example,
where handcrafted maps such as the scale-invariant feature transform (SIFT)
[18] or the histogram of oriented gradients (HOG) [14] were created to be in-
variant to transformations like scaling, translation or rotation. The results we
present here were inspired by the two more recent papers [12, 16] and are a con-
tinuation of work presented in [3, 4, 5]. Similar approaches can also be found
in [1, 10, 11] and, most notably, [19].

Taking a wider view of the literature, there is another notable approach
to invariant machine learning which consists of propagating the invariance of
a problem through multiple equivariant layers : maps f : V → W such that
f(gv) = gf(v) for all g ∈ G and all v ∈ V . (Here, G is also assumed to act onW .)
The posterchildren for equivariant machine learning models are convolutional
neural networks (CNNs) [17] which are translation invariant. (Though some
care has to be taken when defining “translation invariance” [2].)

A well-known generalisation of the CNN architecture in the same spirit is
the group equivariant convolutional network architecture [13] which introduces
layers that can respect more general symmetries. Alternative approaches include
[22] (cf. also [9]) as well as [23].

1.1 Sorting-based embeddings

Let G be a finite group acting unitarily on a d ∈ N dimensional real inner
product space V . One approach to construct maps that satisfy items 1 through
3 is to enumerate the group G = {gi}Mi=1 and define the coorbits

κφ : V → R
M , κφv :=

(
〈v, g1φ〉V . . . 〈v, gMφ〉V

)⊤
,

for φ ∈ V , where 〈·, ·〉V denotes the inner product on V . By choosing a finite
sequence Φ := (φi)

N
i=1 ∈ V , sorting the coorbits, and collecting them in a matrix,

one obtains an invariant map

βΦ : V → R
M×N , βΦ(v) :=

(
sort(κφ1

v) . . . sort(κφN
v)
)
,

where sort : R
M → R

M denotes the operator that sorts vectors in a mono-
tonically decreasing way. To reduce the embedding dimension, a linear map
α : R

M×N → R
D can be applied to the sorted coorbits.

This idea was first introduced in [3] in the context of the action of the
group Sm by row permutation on the space of matrices R

m×n. The authors
demonstrated that the map γ(X) := sort(XA)1 separates orbits for full spark
matrices A ∈ R

n×N with N > (n − 1)m!. They also showed that γ satisfies
the bi-Lipschitz condition (inequality (1)) if it separates orbits, and that α′ ◦ γ
satisfies inequality (1) for a generic2 linear map α′ : R

m×N → R
D with N ≥ 2n

and D ≥ 2mn (provided that γ separates orbits). Notably, the embedding
α′ ◦ γ passes through an intermediate Euclidean space of dimension larger than
(n− 1)m!, which grows rapidly with the matrix size.

The papers [12, 16] address this issue. In [16], among other things, it is shown
that γ(X) := diag(B⊤ sort(XA)) separates orbits for generic pairs (A,B) ∈
R
n×D × R

D×m with D > 2mn. Whether γ satisfies inequality (1) remained

1Here, sort : R
m×N

→ R
m×N is the operator that sorts matrices column-wise.

2By generic, we mean that a statement is true in a non-empty Zariski open set.
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an open question. In [12], the authors show that, if α(X) :=
(
X11 . . . X1D

)

selects the maximal entries of the coorbits, then γ := α◦βΦ : R
d → R

D separates
orbits for generic sequences Φ = (φi)

D
i=1 ∈ R

d with D ≥ 2d, whenever G ≤ O(d)
is a finite subgroup of the orthogonal d × d matrices. They also prove that γ
satisfies inequality (1) with high probability if D is sufficiently large, and they
pose the question whether γ satisfies inequality (1) whenever it separates orbits.

This was affirmatively answered in [4], where it was shown that γ = α ◦ βΦ :
V → R

D satisfies the bi-Lipschitz condition if it separates orbits for any finite
group G acting isometrically on V , provided that α : R

M×N → R
D selects any

subset of the entries of βΦ(v). Additionally, in [5], it was shown that such γ
separate orbits provided that Φ is chosen generically with respect to the Zariski
topology on V N and that the right subset of entries of βΦ(v) is chosen.

1.2 Results

In this paper, we generalise the results of [3, 4] to encompass arbitrary linear
maps α : R

M×N → R
D, which proves, in particular, that the embeddings γ(X) =

diag(B⊤ sort(XA)) satisfy inequality (1) for generic pairs (A,B) ∈ R
n×D ×

R
D×m when D > 2mn.

Theorem 1 (Main result). The embedding γ = α ◦ βΦ : V → R
D separates

orbits if and only if it satisfies the bi-Lipschitz condition (1).

Moreover, we remark that, as noted in [20], the hypothesis class of functions
that factor into an invariant and an optimisable part, as described at the begin-
ning of the introduction, can contain general invariant (Lipschitz) continuous
functions, if g is restricted to a sufficiently large class of functions.

Specifically, we note that any group invariant Lipschitz map into a Hilbert
space factors through γ.

Theorem 2. Let f : V → H be invariant under the action of G and Lipschitz
continuous with Lipschitz constant Cf > 0, where H is some Hilbert space. If
γ = α ◦ βΦ : V → R

D separates orbits, then there exists g : R
D → H Lipschitz

continuous with Lipschitz constant at most Cf/c such that f = g ◦ γ.

Remark 3. It is obvious that any composition of Lipschitz continuous maps is
Lipschitz continuous in turn. In particular, f = g ◦ γ is Lipschitz continuous
(and invariant under the action of G) provided that g : R

D → M is Lipschitz
continuous, where M is a metric space.

Additionally, we note that any continuous group invariant map into a locally
convex space also factors through γ.

Theorem 4. Let f : V → Z be invariant under the action of G and continuous,
where Z is some locally convex space. If γ = α ◦ βΦ : V → R

D separates orbits,
then there exists g : R

D → Z continuous such that g(RD) is a subset of the
convex hull of f(V ) and such that f = g ◦ γ.

Remark 5. Vice versa, since compositions of continuous maps are continuous,
we have that f = g ◦ γ is continuous (and invariant under the action of G) if
g : R

D → Z is continuous, where Z is a topological space.
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1.3 Examples

Finally, we want to remark that our main result does not hold for general ReLU
neural networks and we want to provide two examples of setups in which our
results do apply.

Remark 6 (There exists an injective ReLU neural networks that is not bi-Lips-
chitz). A general ReLU neural network of depth L ∈ N is a map N : R

ℓ0 → R
ℓL

of the form

N (x) :=

{
W1x+ b1 if L = 1,

WLρ(. . . ρ(W1x+ b1) . . . ) + bL if L ≥ 2,

where ℓ0, . . . , ℓL ∈ N denote the layer widths, ρ : R → R, ρ(x) := max{x, 0},
denotes the ReLU activation function, which is applied component-wise to vec-
tor inputs, Wk ∈ R

ℓk×ℓk−1 denote the weight matrices and bk ∈ R
ℓk denote the

bias vectors for k ∈ [L].
A simple example of a map that is injective but not bi-Lipschitz is given by

f : R → R
2,

f(x) :=





−(1, x+ 1) if x < −1,

(x, 0) if − 1 ≤ x ≤ 1,

(1, x− 1) if 1 < x.

It is not hard to check that f is injective. At the same time, f does not satisfy
the lower Lipschitz condition because ‖f(x)− f(−x)‖2 = 2 for x 6∈ [−1, 1] while
|x− (−x)| = 2|x| is unbounded.

The above map can readily be extended to a map fd : R
d → R

d+1 for d ∈ N

via fd(x) = fd(x1, x2, . . . , xd) = (f(x1), x2, . . . , xd). Additionally, f = f1 can
be implemented as a ReLU neural network with two layers: indeed, choose

W1 =




1
1
−1


 , b1 =




1
−1
−1


 ,

W2 =

(
1 −1 0
0 1 1

)
, b2 =

(
−1
0

)
,

and note that N = f .

Example 7 (Permutation invariant representations). Let us consider the action
of the group Sm by row permutation on the vector space of matrices R

m×n.
This setup is naturally encountered in learning on graphs with m vertices, where
feature vectors of dimension n are associated to every vertex, if the hypothesis
is to be invariant under the permutation of vertices.

We want to come back to the permutation invariant embedding proposed in
[16] as a variation on the embedding proposed earlier in [3]: γA,B : R

m×n → R
D,

γA,B(X) := diag(B⊤ sort(XA)), X ∈ R
m×n,

where A ∈ R
n×D, B ∈ R

m×D, diag : R
D×D → R

D is the linear operator that
extracts the diagonal from a D ×D matrix and sort : R

m×D → R
m×D denotes

column-wise sorting of matrices.
In [16], it is shown that γA,B separates orbits for almost every (A,B) ∈

R
n×D × R

m×D provided that D > 2mn. Additionally, one may note that γA,B

can be evaluated in polynomial time. Indeed, evaluating γA,B requires
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1. a matrix multiplication of a matrix of dimension m × n and a matrix of
dimension n×D, which can be performed in O(Dmn) operations,

2. sorting D vectors of length m, which can be performed in O(Dm logm)
operations,

3. computing D inner products of vectors of length m, which can be per-
formed in O(Dm) operations.

Overall, we have an evaluation complexity ofO(Dm(n+logm)) which, assuming
that D ∼= mn and m ∼= n, is O(m4).

Our main result, Theorem 1, shows that γA,B satisfies the bi-Lipschitz con-
dition: there exist constants 0 < c ≤ C such that

c min
P∈Sm

‖X−PY‖F ≤ ‖γA,B(X)− γA,B(Y)‖2 ≤ C min
P∈Sm

‖X−PY‖F,

for all X,Y ∈ R
m×n. Computation of an upper bound for the Lipschitz con-

stant C is possible by Proposition 23. For practical purposes, it would also be
interesting to lower bound the lower Lipschitz constant c > 0. While this is
hard, in general, in some special cases it is possible.

Example 8 (Sign retrieval). In sign retrieval, estimating c explicitly is simplified
by what is known as the σ-strong complement property [7, 8]: we are interested
in the recovery of vectors x ∈ R

n from magnitude-only measurements

|〈x, ai〉|, i ∈ [D], (2)

where (ai)
D
i=1 ∈ R

n is a sequence of measurement vectors. Since x and −x

generate the same measurements, one typically aims to recover vectors up to a
global sign; i.e., up to the equivalence relation x ∼ y : ⇐⇒ x = y or x = −y;
or, up to action of the group G = {−1, 1} on the vector space of signals R

d.
The action of the group S2 by row permutation on the vector space of ma-

trices R
2×n is closely related to this sign retrieval problem as demonstrated in

[6]: indeed, βA : R
2×n → R

2×D,

βA(X) := sort(XA), X ∈ R
2×n,

where A ∈ R
n×D is a matrix with column vectors (ai)

D
i=1 ∈ R

n, separates orbits
if and only if all x ∈ R

n can be uniquely recovered from the measurements (2)
up to a global sign.

However, not only the orbit separating properties of βA are related to a
sign retrieval problem, also the bi-Lipschitz condition is related to the Lipschitz
properties of the sign retrieval operator A : R

d/{−1, 1} → R
D
+ ,

A(x)i := |〈x, ai〉|, i ∈ [D].

Indeed, the Lipschitz constant for the embedding βA is exactly the Lipschitz
constant of A and thus given by the largest singular value σ1(A) of the matrix
A. Moreover, the lower Lipschitz constant for the embedding βA is also exactly
the lower Lipschitz constant of A and thus exactly given by the quantity

c = min
S⊆[D]

√
σ2
n(AS) + σ2

n(ASc) (3)

5



as demonstrated in [6, 7]. Here, σn(·) is used to denote the n-th singular value
(in decreasing order) of a matrix and AS ∈ R

n×|S| denotes the matrix obtained
by only keeping the columns whose indices are elements of S ⊆ [D].

Equation (3) can allow for relatively simple computation of the lower Lip-
schitz constant of the permutation-invariant embedding βA. Indeed, consider
A ∈ R

2×3 whose columns are given by the Mercedes-Benz frame

a1 =

(
−
√
3/2

−1/2

)
, a2 =

(√
3/2

−1/2

)
, a3 =

(
0
1

)
,

as an example. Then, it is a simple exercise to show that c = 1√
2
.

2 Continuous maps factor through sorting based

embeddings

In this section, we prove Theorems 2 and 4. These two results are based on
two well-known extension theorems: the Kirszbraun extension theorem and the
Tietze extension theorem.

The precise version of the Kirszbraun extension theorem that we are going
to use is due to F. A. Valentine [21].

Theorem 9 (Kirszbraun–Valentine extension theorem). Let H1, H2 be Hilbert
spaces, let S ⊆ H1 and let g0 : S → H2 be a Lipschitz continuous map with
Lipschitz constant C > 0. Then, g0 can be extended to a Lipschitz continuous
map g : H1 → H2 with the same Lipschitz constant C.

We note that the above theorem implies that any Lipschitz continuous map
factors through any lower Lipschitz continuous map in the following sense.

Corollary 10. Let X be a metric space, let H1, H2 be Hilbert spaces, let h :
X → H1 be lower Lipschitz continuous with lower Lipschitz constant ch > 0 and
let f : X → H2 be Lipschitz continuous with Lipschitz constant Cf > 0. Then,
there exists g : H1 → H2 Lipschitz continuous with Lipschitz constant at most
Cf/ch such that f = g ◦ h.

Proof. Let dX denote the metric on X and let ‖·‖Hi
denote the norm on Hi

where i = 1, 2.
Since h is lower Lipschitz continuous, it is injective and thus invertible on its

range R(h). We may therefore define g0 := f ◦ h−1 : R(h) ⊆ H1 → H2. It clear
that g0 is Lipschitz continuous with Lipschitz constant at most Cf/ch since

‖g0(x)− g0(y)‖H2
= ‖f(h−1(x)) − f(h−1(y))‖H2

≤ CfdX(h−1(x), h−1(y))

≤ Cf

ch
‖x− y‖H1

for x, y ∈ H1. Therefore, by the Kirszbraun–Valentine extension theorem, g0
extends to g : H1 → H2 Lipschitz continuous with Lipschitz constant at most
Cf/ch. Finally, we have f = g ◦ h by construction.

Remark 11. Most likely this corollary has been proven before or been included
in a textbook as an exercise. We were unable to find a reference, however.
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We can now prove Theorem 2.

Proof of Theorem 2. Let ‖·‖H denote the norm on H .
Since f is invariant under the action of G, it descends through the quotient to

f̂ : V/∼ → H . Moreover, since f is Lipschitz continuous with Lipschitz constant

Cf , so is f̂ : let v, w ∈ V and let g ∈ G be such that dist(v, w) = ‖v − gw‖V .
Then, it holds that

‖f̂([v]) − f̂([w])‖H = ‖f(v)− f(gw)‖H ≤ Cf‖v − gw‖V = Cf dist(v, w),

where [v] = {gv | g ∈ G} denotes the equivalence class of v and [w] denotes the
equivalence class of w.

If γ : V → R
D separates orbits, then it satisfies the bi-Lipschitz condition

according to our main theorem. In particular, since γ is also invariant under
the action of G, it also descends through the quotient to γ̂ : V/∼ → H and γ̂ is
lower Lipschitz continuous with lower Lipschitz constant c > 0.

By Corollary 10, there exists g : R
D → H Lipschitz continuous with Lipschitz

constant at most Cf/c such that f̂ = g ◦ γ̂. Letting v ∈ W , we also get

f(v) = f̂([v]) = g(γ̂([v])) = g(γ(v)).

Similarly, the precise version of the Tietze extension theorem that we are
going to use is due to J. Dugundji [15].

Theorem 12 (Dugundji–Tietze extension theorem). Let Y be a metric space,
let Z be a locally convex space, let S ⊆ Y be a closed subset of Y and let
g0 : S → Z be a continuous map. Then, g0 can be extended to a continuous
map g : Y → Z in such a way that g(Y ) is a subset of the convex hull of g0(S).

We note that this immediately implies that any continuous function factors
through any injective, relatively open function with closed range.

Corollary 13. Let X be a topological space, let Y be a metric space and let Z be
a locally convex space. Let h : X → Y be an injective, relatively open map with
closed range and let f : X → Z be continuous. Then, there exists g : Y → Z
continuous such that g(Y ) is a subset of the convex hull of f(X) and such that
f = g ◦ h.

Proof. Since h is injective, it is invertible on its range R(h). We may there-
fore define g0 := f ◦ h−1 : R(h) ⊆ Y → Z. Since f is continuous and h is
relatively open, it follows that g0 is continuous. Since the range of h is closed,
the Dugundji–Tietze extension theorem implies that g0 extends to a contin-
uous function g : Y → Z such that g(Y ) is contained in the convex hull of
g0(R(h)) = f(X). Finally, we have f = g ◦ h by construction.

Remark 14. Again, this corollary has most likely been proven or, at least, men-
tioned before but we were unable to find a reference.

We can now prove Theorem 4.
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Proof of Theorem 4. Again, f descends through the quotient to f̂ : V/∼ → Z

and, since f is continuous, so is f̂ . Because γ separates orbits, our main theorem
implies that γ satisfies the bi-Lipschitz condition. Of course, γ descends through
the quotient to γ̂ : V/∼ → H and, since γ satisfies the bi-Lipschitz condition, γ̂
is bi-Lipschitz such that its range R(γ̂) is closed and γ̂ is injective. Therefore, γ̂
is invertible on its range R(γ̂) and its inverse is Lipschitz continuous on R(γ̂):
it follows that γ̂ is relatively open. By Corollary 13, there exists g : R

D → Z
continuous such that g(RD) is a subset of the convex hull of f̂(V/∼) = f(V )

and f̂ = g ◦ γ̂. As before, we get f = g ◦ γ.

3 Preliminaries for the proof of Theorem 1

3.1 Sorting coorbits

Denote the set of permutations that sort a vector x ∈ R
M by

L(x) := {σ ∈ SM |σx = sort(x)}.

Let us furthermore denote the stabiliser of x by

H(x) := {σ ∈ SM |σx = x}.

The sets L(x) and H(x) are related in the following way.

Proposition 15. Let x ∈ R
M and σ ∈ L(x). Then, L(x) = σH(x).

Next, we may denote

δ(x) := min
i,j∈[M ]
xi 6=xj

|xi − xj |.

If the vector x is not constant, then δ(x) is exactly a scalar multiple of the
distance of x to the next hyperplane of the form {x ∈ R

M |xi = xj}, for
i, j ∈ [M ] with i < j that does not contain x.

Proposition 16. Let x ∈ R
M . Then,

δ(x) = min
σ∈SM\H(x)

‖(σ − e)x‖∞ = min
σ∈SM\L(x)

‖σx− sort(x)‖∞.

Finally, let us denote the difference of the maximum and minimum of a
vector x by

∆(x) := max
i∈[M ]

xi − min
i∈[M ]

xi = max
i,j∈[M ]

|xi − xj |.

8



Introducing the matrix D ∈ R
M(M−1)/2×M ,

D =




1 −1

−1

1 −1
0 1 −1

0 1 −1
...

0 0 1 −1








M − 1





M − 2

}
1

,

we may write ∆(x) = ‖Dx‖∞, which shows that ∆(·) satisfies the triangle
inequality and is absolutely homogeneous. Finally, we note the following simple
inequality.

Proposition 17. Let x ∈ R
M . Then, δ(x) ≤ ∆(x).

Inspired by [4], we show a score of set inclusions and equalities. Let us start
by proving the following simple inclusions (cf. [4, Lemma 2.5 on p. 7]).

Lemma 18. Let x,y ∈ R
M be such that ∆(y) < δ(x). Then, L(x+ y) ⊆ L(x)

and H(x+ y) ⊆ H(x).

Proof. We show that L(x)c ⊆ L(x+y)c: if σ 6∈ L(x), then we may find i, j ∈ [M ]
such that i < j and xσ(i) < xσ(j). Therefore,

xσ(j) + yσ(j) − xσ(i) − yσ(i) ≥ min
i,j∈[M ]
xi 6=xj

|xi − xj |+ min
i∈[M ]

yi − max
i∈[M ]

yi

= δ(x)−∆(y) > 0

such that σ 6∈ L(x + y). Finally, pick σ ∈ L(x + y) ⊆ L(x) and note that
H(x+ y) = σ−1L(x + y) ⊆ σ−1L(x) = H(x) according to Proposition 15.

Using this lemma, we can show that the set of sorting permutations does
not change along certain straight line segments (cf. [4, Lemma 2.6 on p. 8]).

Lemma 19. Let x,y ∈ R
M be such that ∆(y) < δ(x). Then, L(x + ty) =

L(x+ y) and H(x+ ty) = H(x+ y) for t ∈ (0, 1].

Proof. ⊆. Let σ ∈ L(x + ty). Then, Lemma 18 implies that σ ∈ L(x). So, let
i, j ∈ [M ] be such that i < j. There are two cases: either xσ(i) = xσ(j) in which
case

(x+ y)σ(i) − (x+ y)σ(j) = yσ(i) − yσ(j) = t−1(tyσ(i) − tyσ(j))

= t−1
(
(x+ ty)σ(i) − (x+ ty)σ(j)

)
≥ 0;

or xσ(i) > xσ(j) in which case

(x+ y)σ(i) − (x+ y)σ(j) = xσ(i) − xσ(j) + yσ(i) − yσ(j) ≥ δ(x)−∆(y) > 0.

Either way, (x+y)σ(i) ≥ (x+y)σ(j) . Since i, j ∈ [M ] were arbitrary, we conclude
that σ ∈ L(x+ y).
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⊇. The reverse inclusion follows because x+ ty = t(x+y)+(1− t)y is a convex
combination of x+ y and x. More precisely, we have that σ ∈ L(x+y) ⊆ L(x)
such that

(x+ ty)σ(i) = t(x+ y)σ(i) + (1 − t)xσ(i)

≥ t(x+ y)σ(j) + (1− t)xσ(j) = (x+ ty)σ(j)

for all i, j ∈ [M ] such that i < j. Therefore, σ ∈ L(x + ty).

The equality for the stabilisers follows from the equality for the permutations
that sort by Proposition 15.

Next, we prove that the set of permutations that sort is stable on sufficiently
small hypercubes (cf. [4, Lemma 2.8, items 1 and 2 on p. 10]).

Lemma 20. Let p ∈ N, (xk)
p
k=1 ∈ R

M , (ck)
p
k=1 ∈ R+ and ǫ ∈ (0, 1) be such

that

∆(xℓ+1) < δ

(
ℓ∑

k=1

xk

)
, ℓ ∈ [p− 1],

∆

(
p∑

k=1

(ck − 1)xk

)
≤ ǫ · δ

(
p∑

k=1

xk

)
.

Then, it holds that

1. L
(

p∑

k=1

xk

)
= L

(
p∑

k=1

ckxk

)
, 2. H

(
p∑

k=1

xk

)
= H

(
p∑

k=1

ckxk

)
,

3. (1− ǫ) · δ
(

p∑

k=1

xk

)
≤ δ

(
p∑

k=1

ckxk

)
≤ (1 + ǫ) · δ

(
p∑

k=1

xk

)
.

Proof. ⊇. We note that

p∑

k=1

ckxk =

p∑

k=1

xk +

p∑

k=1

(ck − 1)xk, ∆

(
p∑

k=1

(ck − 1)xk

)
< δ

(
p∑

k=1

xk

)
.

Therefore,

L
(

p∑

k=1

ckxk

)
⊆ L

(
p∑

k=1

xk

)

follows from Lemma 18. We conclude that the stabilisers satisfy the same in-
clusion.

⊆. Applying Lemma 18 inductively yields

L
(

p∑

k=1

xk

)
⊆ L

(
p−1∑

k=1

xk

)
⊆ · · · ⊆ L(x1).

10



So, if σ ∈ L(∑p
k=1 xk) and τ ∈ L(∑p

k=1 ckxk) ⊆ L(∑p
k=1 xk), then

σx1 = sort(x1) = τx1,

σ(x1 + x2) = sort(x1 + x2) = τ(x1 + x2),

...

σ

(
p∑

k=1

xk

)
= sort

(
p∑

k=1

xk

)
= τ

(
p∑

k=1

xk

)
,

such that σxk = τxk for k ∈ [p]. Therefore,

sort

(
p∑

k=1

ckxk

)
= τ

(
p∑

k=1

ckxk

)
=

p∑

k=1

ckτxk =

p∑

k=1

ckσxk = σ

(
p∑

k=1

ckxk

)

and σ ∈ L(∑p
k=1 ckxk). It follows that the stabilisers satisfy the same inclusion.

Inequalities. Before proving the two inequalities, we establish the following
claim.

Claim. Let i, j ∈ [M ]. Then,
(

p∑

k=1

ckxk

)

i

>

(
p∑

k=1

ckxk

)

j

⇐⇒
(

p∑

k=1

xk

)

i

>

(
p∑

k=1

xk

)

j

.

Proof of the claim. First, note that (ij) ∈ H(
∑p

k=1 ckxk) if and only if (ij) ∈
H(
∑p

k=1 xk) according to item 2. Now, assume by contradiction that
(

p∑

k=1

ckxk

)

i

>

(
p∑

k=1

ckxk

)

j

,

(
p∑

k=1

xk

)

i

<

(
p∑

k=1

xk

)

j

and consider the function f : [0, 1] → R,

f(t) :=

p∑

k=1

(1 + t(ck − 1)) ((xk)i − (xk)j) ,

which satisfies f(0) < 0 and f(1) > 0. By the intermediate value theorem, there
exists t ∈ (0, 1) such that f(t) = 0. By item 2 and

∆

(
p∑

k=1

((1 + t(ck − 1))− 1)xk

)
= t ·∆

(
p∑

k=1

(ck − 1)xk

)
< t · δ

(
p∑

k=1

xk

)
,

we may conclude that

(ij) ∈ H
(

p∑

k=1

(1 + t(ck − 1))xk

)
= H

(
p∑

k=1

xk

)

which contradicts the assumption (
∑p

k=1 xk)i < (
∑p

k=1 xk)j . The reverse im-
plication follows by noting that

(ij) ∈ H
(

p∑

k=1

xk

)
= H

(
p∑

k=1

ckxk

)

11



contradicts the assumption (
∑p

k=1 ckxk)i > (
∑p

k=1 ckxk)j and exchanging the
role of i and j.

Now, let i, j ∈ [M ] be such that (
∑p

k=1 ckxk)i > (
∑p

k=1 ckxk)j and

δ

(
p∑

k=1

ckxk

)
=

(
p∑

k=1

ckxk

)

i

−
(

p∑

k=1

ckxk

)

j

> 0.

Then, we may use the claim to see that

δ

(
p∑

k=1

ckxk

)
=

(
p∑

k=1

xk

)

i

−
(

p∑

k=1

xk

)

j

+

(
p∑

k=1

(ck − 1)xk

)

i

−
(

p∑

k=1

(ck − 1)xk

)

j

≥ δ

(
p∑

k=1

xk

)
−∆

(
p∑

k=1

(ck − 1)xk

)
≥ (1− ǫ) · δ

(
p∑

k=1

xk

)
.

Vice versa, let i, j ∈ [M ] be such that (
∑p

k=1 xk)i > (
∑p

k=1 xk)j and

δ

(
p∑

k=1

xk

)
=

(
p∑

k=1

xk

)

i

−
(

p∑

k=1

xk

)

j

> 0.

Using the claim once more yields

δ

(
p∑

k=1

xk

)
=

(
p∑

k=1

ckxk

)

i

−
(

p∑

k=1

ckxk

)

j

+

(
p∑

k=1

(1− ck)xk

)

i

−
(

p∑

k=1

(1 − ck)xk

)

j

≥ δ

(
p∑

k=1

ckxk

)
−∆

(
p∑

k=1

(ck − 1)xk

)

≥ δ

(
p∑

k=1

ckxk

)
− ǫ · δ

(
p∑

k=1

xk

)

which proves the upper bound after rearrangement of the inequality.

Finally, we show that the set of permutations that sort remains stable on
sufficiently small hypercubes when we add a sufficiently small additional vector
(cf. [4, Lemma 2.8, item 3 on p. 10]).
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Lemma 21. Let p ∈ N, (xk)
p
k=1,y ∈ R

M and (ck)
p
k=1 ∈ R+ be such that

∆(xℓ+1) < δ

(
ℓ∑

k=1

xk

)
, ℓ ∈ [p− 1],

∆

(
p∑

k=1

(ck − 1)xk

)
≤ 1

2
· δ
(

p∑

k=1

xk

)
,

∆(y) ≤ 1

2
· δ
(

p∑

k=1

xk

)
.

Then,

L
(

p∑

k=1

xk + y

)
= L

(
p∑

k=1

ckxk + y

)
,

H
(

p∑

k=1

xk + y

)
= H

(
p∑

k=1

ckxk + y

)
.

Proof. Before proving the two inclusions, we show the following claim.

Claim. Let i, j ∈ [M ]. Then,
(

p∑

k=1

xk

)

i

=

(
p∑

k=1

xk

)

j

=⇒ ∀k ∈ [p] : (xk)i = (xk)j .

Proof of the claim. If (
∑p

k=1 xk)i = (
∑p

k=1 xk)j , then (ij) ∈ H(
∑p

k=1 xk). Ac-
cording to Lemma 18, we have

(ij) ∈ H
(

p∑

k=1

xk

)
⊆ H

(
p−1∑

k=1

xk

)
⊆ · · · ⊆ H(x1).

Therefore,

(x1)i = (x1)j ,

(x1 + x2)i = (x1 + x2)j ,

...
(

p∑

k=1

xk

)

i

=

(
p∑

k=1

xk

)

j

,

which implies (xk)i = (xk)j for k ∈ [p].

⊆. Let σ ∈ L(∑p
k=1 xk + y) ⊆ L(∑p

k=1 xk) (according to Lemma 18) and let
i, j ∈ [M ] be such that i < j.

We may now consider two cases: if
∑p

k=1(xk)σ(i) =
∑p

k=1(xk)σ(j), then

(
p∑

k=1

ckxk + y

)

σ(i)

−
(

p∑

k=1

ckxk + y

)

σ(j)

= yσ(i) − yσ(j)

=

(
p∑

k=1

xk + y

)

σ(i)

−
(

p∑

k=1

xk + y

)

σ(j)

≥ 0
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according to the claim.
If, vice versa,

∑p
k=1(xk)σ(i) >

∑p
k=1(xk)σ(j), then

(
p∑

k=1

ckxk + y

)

σ(i)

−
(

p∑

k=1

ckxk + y

)

σ(j)

=

(
p∑

k=1

ckxk

)

σ(i)

−
(

p∑

k=1

ckxk

)

σ(j)

+ yσ(i) − yσ(j)

≥ δ

(
p∑

k=1

ckxk

)
−∆(y) ≥ 1

2
· δ
(

p∑

k=1

xk

)
−∆(y) ≥ 0,

where we use the claim in the proof of Lemma 20 and Lemma 20 itself. So,
in both cases (

∑p
k=1 ckxk + y)σ(i) ≥ (

∑p
k=1 ckxk + y)σ(j). Since i, j ∈ [M ] are

arbitrary indices satisfying i < j, we can conclude that σ ∈ L(∑p
k=1 ckxk + y).

⊇. Let σ ∈ L(∑p
k=1 ckxk + y) ⊆ L(∑p

k=1 ckxk) = L(∑p
k=1 xk) and τ ∈

L(∑p
k=1 xk + y) ⊆ L(∑p

k=1 ckxk + y) ⊆ L(∑p
k=1 xk). Then, we can show

that σxk = τxk for k ∈ [p], as in the proof of Lemma 20. Therefore,

σ

(
p∑

k=1

ckxk + y

)
= sort

(
p∑

k=1

ckxk + y

)
= τ

(
p∑

k=1

ckxk + y

)

implies σy = τy. Finally, we have

sort

(
p∑

k=1

xk + y

)
= τ

(
p∑

k=1

xk + y

)
=

p∑

k=1

τxk + τy =

p∑

k=1

σxk + σy

= σ

(
p∑

k=1

xk + y

)

such that σ ∈ L(∑p
k=1 xk + y).

The equality for the stabilisers follows immediately.

3.2 Stabilisers of the group action

The stabilisers H(v) := {g ∈ G | gv = v} of vectors v ∈ V under the group
action satisfy an inclusion similar to the one presented in Lemma 18

Lemma 22. Let v, w ∈ V be such that

‖w‖V <
1

2
· min
g 6∈H(v)

‖(e− g)v‖V .

Then, H(v + w) ⊆ H(v).

Proof. Let g 6∈ H(v) and consider

‖g(v + w)− (v + w)‖V ≥ ‖(e− g)v‖V − 2‖w‖V
≥ min

g 6∈H(v)
‖(e− g)v‖V − 2‖w‖V > 0

such that g 6∈ H(v + w).
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4 The proof of Theorem 1

Throughout this section, we will work with the map γ̂ : V/∼ → R
D naturally

obtained from setting γ̂([v]) = γ(v) for v ∈ V . Here, [v] = {gv | g ∈ G} denotes
the equivalence class of v. Throughout the rest of this section, we will drop the
brackets and denote the equivalence class by v as well.

We will start by proving that γ̂ is Lipschitz continuous.

Proposition 23 (Lipschitz continuity). Let K : V → R
MN denote the collection

of coorbits

Kv =



κφ1

v
...

κφN
v


 , v ∈ V,

and let ‖K‖op := max‖v‖V =1‖Kv‖2 denote its operator norm. Then,

γ̂ : (V/∼, dist) → (RD, ‖·‖2)

is Lipschitz continuous with Lipschitz constant bounded by ‖α‖F→2 · ‖K‖op.
Proof. Somewhat similar to the proofs of [3, Theorem 3.9 on p. 15] and [4,
Lemma 2.3 on p. 5], we let v, w ∈ V be arbitrary and estimate

‖γ(v)− γ(w)‖22
=
∥∥α
((
sort(κφ1

v)− sort(κφ1
w) . . . sort(κφN

v)− sort(κφN
v)
))∥∥2

2

≤ ‖α‖2F→2 ·
∥∥(sort(κφ1

v)− sort(κφ1
w) . . . sort(κφN

v)− sort(κφN
v)
)∥∥2

F

= ‖α‖2F→2 ·
N∑

ℓ=1

‖sort(κφℓ
v)− sort(κφℓ

w)‖22 ≤ ‖α‖2F→2 ·
N∑

ℓ=1

‖κφℓ
(v − w)‖22

= ‖α‖2F→2 · ‖K(v − w)‖22 ≤ ‖α‖2F→2 · ‖K‖2op · ‖v − w‖2V .

Now, let v, w ∈ V and let g ∈ G be such that dist(v, w) = ‖v − gw‖V . Then,

‖γ̂(v) − γ̂(w)‖2 = ‖γ(v)− γ(gw)‖2 ≤ ‖α‖F→2 · ‖K‖op · ‖v − gw‖V
= ‖α‖F→2 · ‖K‖op · dist(v, w)

as desired.

Remark 24. If we choose an orthonormal basis for V and express K as a matrix
with respect to that basis, then ‖K‖op coincides with the largest singular value
of that matrix.

The inductive procedure for the rest of the proof of the main theorem (The-
orem 1) is adapted from [4]. The argument for the base case is also contained
in [3].

Lemma 25 (Base case). If γ̂ : (V/∼, dist) → (RD, ‖·‖2) is injective and not
lower Lipschitz continuous, then there exists z1 ∈ V , ‖z1‖V = 1, at which the
local lower Lipschitz constant of γ̂ vanishes; more precisely, there exist sequences
(vi)

∞
i=1, (wi)

∞
i=1 ∈ V such that vi 6∼ wi for i ∈ N, limi→∞ vi = limi→∞ wi = z1

and

lim
i→∞

‖γ(vi)− γ(wi)‖2
dist(vi, wi)

= 0.
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Proof. Since we assume that γ̂ is not lower Lipschitz continuous, there exist
sequences (vi)

∞
i=1, (wi)

∞
i=1 ∈ V such that vi 6∼ wi for i ∈ N and

lim
i→∞

‖γ(vi)− γ(wi)‖2
dist(vi, wi)

= 0.

The fraction is invariant under the transformation (v, w) 7→ r(w, v), r > 0, such
that we can assume without loss of generality that ‖vi‖V ≤ ‖wi‖V = 1. Since
the unit ball in finite-dimensional vector spaces is compact, we can extract
subsequences along which both (vi)

∞
i=1 and (wi)

∞
i=1 converge. Let us pass to

these subsequences and define

f1 := v∞ := lim
i→∞

vi, w∞ := lim
i→∞

wi.

We may now use the continuity of γ (which follows because γ̂ and thus γ is
Lipschitz continuous) to see that

‖γ(v∞)− γ(w∞)‖2 = lim
i→∞

‖γ(vi)− γ(wi)‖2 ≤ 2 lim
i→∞

‖γ(vi)− γ(wi)‖2
dist(vi, wi)

= 0.

Therefore, γ(v∞) = γ(w∞) and the injectivity of γ̂ implies that f1 = v∞ = gw∞
for some g ∈ G. It follows immediately that ‖f1‖V = ‖w∞‖V = 1. We finally
define w′

i := gwi and note that vi 6∼ w′
i for i ∈ N, limi→∞ w′

i = f1 and that

lim
i→∞

‖γ(vi)− γ(w′
i)‖2

dist(vi, w′
i)

= lim
i→∞

‖γ(vi)− γ(wi)‖2
dist(vi, wi)

= 0.

Before proceeding with the induction step, we prove the following lemma
which is similar to the first claim in the proof of [4, Lemma 2.13 on p. 19]. It
will be used in the proof of the induction step and the final theorem.

Lemma 26. Let p ∈ N, p ≤ d, let (fj)
p
j=1 ∈ V \ {0} be an orthogonal sequence

such that

∀ℓ ∈ [N ], k ∈ [p− 1] : ∆(κφℓ
fk+1) < δ

(
k∑

j=1

κφℓ
fj

)
. (4)

Let F := sp(fj)
p
j=1 ⊆ V and assume that the local lower Lipschitz constant of

γ̂|F : (F/∼, dist) → (RD, ‖·‖2)
vanishes at f := f1 + f2 + · · · + fp. Then, γ̂ : (V/∼, dist) → (RD, ‖·‖2) is not
injective at f .

Proof. Let (vi)i∈N, (wi)i∈N ∈ F be two sequences such that vi 6∼ wi for i ∈ N,
limi→∞ vi = limi→∞ wi = f and

lim
i→∞

‖γ(vi)− γ(wi)‖2
dist(vi, wi)

= 0.

Expand the sequences into the orthogonal basis (fj)
p
j=1 of F :

vi =

p∑

j=1

cijfj , wi =

p∑

j=1

dijfj ,

where cij , dij ∈ R for i ∈ N, j ∈ [p].
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Claim. For i ∈ N large enough, we have

L(κφℓ
vi) = L(κφℓ

f) = L(κφℓ
wi), ℓ ∈ [N ].

Proof of the claim. We only show the first equality. The second equality follows
in the same way: fix ℓ ∈ [N ] arbitrary and note that with the notation

‖κφℓ
‖op = max

v∈V
‖v‖V =1

‖κφℓ
v‖2,

we may estimate

∆

(
p∑

j=1

(cij − 1)κφℓ
fj

)
=

∥∥∥∥∥D
p∑

j=1

(cij − 1)κφℓ
fj

∥∥∥∥∥
∞

≤
√
2 ·
∥∥∥∥∥

p∑

j=1

(cij − 1)κφℓ
fj

∥∥∥∥∥
2

≤
√
2 ·

p∑

j=1

|cij − 1|‖κφℓ
fj‖2 ≤

√
2‖κφℓ

‖op ·
p∑

j=1

|cij − 1|‖fj‖V

≤
√
2d‖κφℓ

‖op ·




p∑

j=1

|cij − 1|2‖fj‖2V




1/2

=
√
2d‖κφℓ

‖op ·
∥∥∥∥∥

p∑

j=1

(cij − 1)fj

∥∥∥∥∥
V

=
√
2d‖κφℓ

‖op · ‖vi − f‖V .

The right-hand side tends to zero as i → ∞. Therefore, there exists Iℓ ∈ N such
that for all i ≥ Iℓ,

∆

(
p∑

j=1

(cij − 1)κφℓ
fj

)
< δ(κφℓ

f).

According to equation (4) (and Lemma 20), we can conclude that L(κφℓ
vi) =

L(κφℓ
f). Setting I := maxℓ∈[N ] Iℓ allows us to conclude that, for all i ≥ I and

all ℓ ∈ [N ], L(κφℓ
vi) = L(κφℓ

f) as desired.

Now, let us pick (σℓ)
N
ℓ=1 ∈ SM be such that σℓ ∈ L(κφℓ

f) for ℓ ∈ [N ] and
note that the claim implies that

‖γ(vi)− γ(wi)‖2
=
∥∥α
((
sort(κφ1

vi)− sort(κφ1
wi) . . . sort(κφN

vi)− sort(κφN
wi)
))∥∥

2

=
∥∥α
(
σ1κφ1

(vi − wi) . . . σNκφN
(vi − wi)

)∥∥
2
,

for i ∈ N large enough. So, let us define ui := (vi − wi)/‖vi − wi‖V . Since
the closed unit ball in F is compact, we can find a subsequence along which ui

converges. Let us pass to this subsequence and denote its limit by u. Then, we
have ‖u‖V = 1 as well as

∥∥α
(
σ1κφ1

u . . . σNκφN
u
)∥∥

2
= lim

i→∞

∥∥α
(
σ1κφ1

ui . . . σNκφN
ui

)∥∥
2

= lim
i→∞

∥∥α
(
σ1κφ1

(vi − wi) . . . σNκφN
(vi − wi)

)∥∥
2

‖vi − wi‖V
≤ lim

i→∞

‖γ(vi)− γ(wi)‖2
dist(vi, wi)

= 0
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and thus α
(
σ1κφ1

u . . . σNκφN
u
)
= 0D.

We finally note that there exist arbitrarily small ǫ > 0 such that f 6∼ f + ǫu:
indeed, assume the opposite and we can find a sequence (ǫn)n∈N ∈ R+ converging
to zero and a group element g ∈ G such that f = gf+ǫngu for all n ∈ N because
G is finite. Therefore, g stabilises f which implies ǫngu = 0 for all n ∈ N: a
contradiction to ‖u‖V = 1. So, let us pick such an ǫ which also satisfies

ǫ < min
ℓ∈[N ]

δ(κφℓ
f)

∆(κφℓ
u)

.

Then, L(κφℓ
(f+ǫu)) ⊆ L(κφℓ

f) for all ℓ ∈ [N ] according to Lemma 18 and thus
picking (σℓ)

N
ℓ=1 ∈ SM such that σℓ ∈ L(κφℓ

(f + ǫu)) for all ℓ ∈ [N ] guarantees
that

γ(f + ǫu) = α
(
sort(κφ1

(f + ǫu)) . . . sort(κφN
(f + ǫu))

)

= α
(
σ1κφ1

(f + ǫu) . . . σNκφN
(f + ǫu)

)

= α
(
σ1κφ1

f . . . σNκφN
f
)
+ ǫ · α

(
σ1κφ1

u . . . σNκφN
u
)

= α
(
σ1κφ1

f . . . σNκφN
f
)
= α

(
sort(κφ1

f) . . . sort(κφN
f)
)

= γ(f);

i.e. γ̂ is not injective at f .

We are now ready to prove the induction step (cf. [4, Lemma 2.13 on p. 19])

Lemma 27 (Induction step). Let p ∈ N, p < d, and let (fj)
p
j=1 ∈ V \ {0}

be an orthogonal sequence such that the local lower Lipschitz constant of γ̂ :
(V/∼, dist) → (RD, ‖·‖2) vanishes at f := f1 + f2 + · · ·+ fp, ‖f1‖ = 1 and

∆(κφℓ
fk+1) < δ

(
κφℓ

k∑

j=1

fj

)
, (5)

‖fk+1‖V <
1

2
· min
g 6∈H(

∑
k
j=1

fj)

∥∥∥∥∥(g − e)

k∑

j=1

fj

∥∥∥∥∥
V

, (6)

for all k ∈ [p− 1], ℓ ∈ [N ].
If γ̂ is injective, then there exists fp+1 ∈ (sp(fj)

p
j=1)

⊥ \ {0} such that the
local lower Lipschitz constant of γ̂ vanishes at f + fp+1 and

∆(κφℓ
fp+1) < δ

(
κφℓ

p∑

j=1

fj

)
,

‖fp+1‖V <
1

2
· min
g 6∈H(

∑p
j=1

fj)

∥∥∥∥∥(g − e)

p∑

j=1

fj

∥∥∥∥∥
V

,

for all ℓ ∈ [N ].

Proof. Let (vi)
∞
i=1, (wi)

∞
i=1 ∈ V be such that vi 6∼ wi for i ∈ N, limi→∞ vi =

limi→∞ wi = f and

lim
i→∞

‖γ(vi)− γ(wi)‖2
dist(vi, wi)

= 0.
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Let (vi)
∞
i=1, (wi)

∞
i=1 ∈ (sp(fj)

p
j=1)

⊥ denote the orthogonal projections of (vi)
∞
i=1,

(wi)
∞
i=1 onto the orthogonal complement of sp(fj)

p
j=1. We may note that vi 6= 0

or wi 6= 0 for i ∈ N large enough: indeed, assume by contradiction that there
exists a subsequence along which vi = wi = 0. Then, the local lower Lipschitz
constant of γ̂|F : (F/∼, dist) → (RD, ‖·‖2) vanishes at f , where F = sp(fj)

p
j=1 ⊆

V . Lemma 26 now implies that γ̂ is not injective: a contradiction.
In the following, we assume without loss of generality that ‖vi‖V ≤ ‖wi‖V 6=

0 for i ∈ N by switching the roles of vi and wi if necessary. Now, write

vi =

p∑

j=1

cijfj + vi, wi =

p∑

j=1

dijfj + wi,

where cij , dij ∈ R for i ∈ N, j ∈ [p]. Next, we define

ui := wi − vi + vi =

p∑

j=1

(dij − cij)fj + wi, i ∈ N,

and note that ‖ui‖V ≥ ‖wi‖V > 0 by the orthogonality of (fj)
p
j=1 and wi.

Finally, set

ti :=
ǫ√

2‖ui‖V
·min

{
min
ℓ∈[N ]

‖κφℓ
‖−1
op δ(κφℓ

f),
1

2
√
2
· min
g 6∈H(f)

‖(g − e)f‖V
}

for i ∈ N, where ǫ < 1 and ‖κφℓ
‖op = max‖v‖V =1‖κφℓ

v‖2 denotes the operator
norm of the coorbit κφℓ

: V → R
M for ℓ ∈ [N ].

We note that

lim
i→∞

‖vi‖2V ≤
(

lim
i→∞

p∑

j=1

|cij − 1|2‖fj‖2V + ‖vi‖2V

)
= lim

i→∞
‖vi − f‖2V = 0,

lim
i→∞

‖ui‖V ≤ lim
i→∞

‖vi − wi‖V + lim
i→∞

‖vi‖V = 0.

It follows that ti → ∞ as i → ∞. So, let us assume that ti > 1 for the rest
of this proof. Finally, note that ‖tiui‖V is constant in i ∈ N. It follows that
tiui converges along a subsequence. Similarly, ‖tivi‖V = ti‖vi‖V ≤ ti‖ui‖V =
‖tiui‖V is upper bounded by a constant in i ∈ N such that tivi converges along a
subsequence as well. Passing to these subsequences, we may write tiui → u 6= 0
and tivi → fp+1. Note that ‖fp+1‖V = limi→∞ ti‖vi‖V ≤ limi→∞ ti‖ui‖V =
‖u‖V .

Claim 1. The sequences

v′i = f + tivi, w′
i = f + tiui, i ∈ N,

achieve lower Lipschitz constant zero.

Proof of Claim 1. The claim is proven in two steps. In the first step, we bound
the denominator dist(v′i, w

′
i): consider (gi)

∞
i=1 ∈ G such that dist(v′i, w

′
i) =

‖giv′i−w′
i‖V . Since G is finite, there exists a group element g ∈ G which occurs
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infinitely often. Let us pass to a subsequence along which this is the case. We
claim that g ∈ H(f): indeed, let h 6∈ H(f) be arbitrary. Then, we have

‖hv′i − w′
i‖V = ‖(h− e)f + ti(hvi − ui)‖V

≥ ‖(h− e)f‖V − ti‖hvi − ui‖V
≥ min

h 6∈H(f)
‖(h− e)f‖V − ti(‖vi‖V + ‖ui‖V )

≥ min
h 6∈H(f)

‖(h− e)f‖V − 2ti‖ui‖V

> 2ti‖ui‖V ≥ ti‖vi − ui‖V = ‖v′i − w′
i‖V ≥ dist(v′i, w

′
i),

by the definition of ti. So, g ∈ H(f) which implies that

dist(v′i, w
′
i) = ti‖gvi − ui‖V = ti

∥∥∥∥∥gvi −
p∑

j=1

(dij − cij)fj − wi

∥∥∥∥∥
V

.

Now, we would like to use that H(f) ⊆ H(
∑p−1

j=1 fj) ⊆ · · · ⊆ H(f1) which
follows from Lemma 22 by inequality (6). Therefore, g ∈ H(fj) for all j ∈ [p]
and we have

dist(v′i, w
′
i) = ti

∥∥∥∥∥gvi −
p∑

j=1

(dij − cij)fj − wi

∥∥∥∥∥
V

= ti

∥∥∥∥∥g
(

p∑

j=1

cijfj + vi

)
−
(

p∑

j=1

dijfj + wi

)∥∥∥∥∥
V

= ti‖gvi − wi‖V ≥ ti dist(vi, wi).

In the second step, we consider the numerator ‖γ(v′i)−γ(w′
i)‖2. For all i ∈ N

and ℓ ∈ [N ], pick arbitrary σiℓ ∈ L(κφℓ
vi) and τiℓ ∈ L(κφℓ

wi). Then, we have

‖γ(vi)− γ(wi)‖2
=
∥∥α
(
sort(κφ1

vi)− sort(κφ1
wi) . . . sort(κφN

vi)− sort(κφN
wi)
)∥∥

2

=
∥∥α
(
σi1κφ1

vi − τi1κφ1
wi . . . σiNκφN

vi − τiNκφ1Nwi

)∥∥
2

=
∥∥∥α
(
σi1κφ1

(∑p
j=1 cijfj + vi

)
− τi1κφ1

(∑p
j=1 dijfj + wi

)

. . . σiNκφN

(∑p
j=1 cijfj + vi

)
− τiNκφN

(∑p
j=1 dijfj + wi

))∥∥∥
2
.

(7)
Next, we want to use that σiℓ, τi,φ ∈ L(κφℓ

∑p
j=1 cijfj) for all ℓ ∈ [N ] and all

i ∈ N large enough.

Claim 2. There exists I ∈ N such that, for all i ≥ I and all ℓ ∈ [N ], we have

L(κφℓ
vi) = L(κφℓ

(f + vi)) ⊆ L(κφℓ
f) = L

(
κφℓ

p∑

j=1

cijfj

)
. (8)

Proof of Claim 2. Let us fix ℓ ∈ [N ] arbitrary. The first equality follows from
Lemma 21 and inequality (5) once

max

{
∆

(
κφℓ

p∑

j=1

(cij − 1)fj

)
,∆(κφℓ

vi)

}
≤ 1

2
· δ(κφℓ

f). (9)
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As part of the proof of Lemma 26, we had shown that

lim
i→∞

∆

(
κφℓ

p∑

j=1

(cij − 1)fj

)
= 0.

Additionally, we can show that

lim
i→∞

∆(κφℓ
vi) ≤

√
2 · lim

i→∞
‖κφℓ

vi‖2 ≤
√
2‖κφℓ

‖op · lim
i→∞

‖vi‖V = 0.

It follows that there exists an integer Iℓ ∈ N such that both inequalities in
equation (9) are satisfed with i ≥ Iℓ.

The second inclusion in equation 8 follows from Lemma 18 due to inequal-
ity (9). The final equality follows from Lemma 20 due to inequality (9) and
inequality (5). Setting I := maxℓ∈[N ] Iℓ finishes the proof of Claim 2.

Claim 3. There exists I ∈ N such that, for all i ≥ I and all ℓ ∈ [N ], we have

L(κφℓ
wi) = L(κφℓ

(f + ui)) ⊆ L(κφℓ
f). (10)

Proof of Claim 3. The proof is almost identical to that of Claim 2 once we
realise that

wi =

p∑

j=1

cijfj + ui, i ∈ N.

We will therefore omit it.

Proof of Claim 1 (continued). Passing to the sequences starting at I, we recon-
sider equation (7): we have

σiℓκφℓ

p∑

j=1

cijfj = sort

(
κφℓ

p∑

j=1

cijfj

)
= τiℓκφℓ

p∑

j=1

cijfj

and thus

‖γ(vi)− γ(wi)‖2
=
∥∥∥α
(
σi1κφ1

(∑p
j=1 cijfj + vi

)
− τi1κφ1

(∑p
j=1 dijfj + wi

)

. . . σiNκφN

(∑p
j=1 cijfj + vi

)
− τiNκφN

(∑p
j=1 dijfj + wi

))∥∥∥
2

=
∥∥∥α
(
σi1κφ1

vi − τi1κφ1

(∑p
j=1(dij − cij)fj + wi

)

. . . σiNκφN
vi − τiNκφN

(∑p
j=1(dij − cij)fj + wi

))∥∥∥
2
.

Next, we may use that σiℓ, τiℓ ∈ L(κφℓ
f) for all i ∈ N and all ℓ ∈ [N ] to see that

ti‖γ(vi)− γ(wi)‖2 = ti
∥∥α
(
σi1κφ1

vi − τi1κφ1
ui . . . σiNκφN

vi − τiNκφN
ui

)∥∥
2

=
∥∥α
(
σi1κφ1

(f + tivi)− τi1κφ1
(f + tiui)

. . . σiNκφN
(f + tivi)− τiNκφN

(f + tiui)
)∥∥

2

=
∥∥α
(
σi1κφ1

v′i − τi1κφ1
w′

i . . . σiNκφN
v′i − τiNκφN

w′
i

)∥∥
2
.

(11)
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Finally, we want to use σiℓ ∈ L(κφℓ
v′i) and τiℓ ∈ L(κφℓ

w′
i) for all i ∈ N and

all ℓ ∈ [N ]. The first inclusion is true because L(κφℓ
(f + vi)) = L(κφℓ

(f + tivi))
is guaranteed by Lemma 19 since

∆(κφℓ
tivi) = ti∆(κφℓ

vi) ≤
√
2ti‖κφℓ

vi‖2 ≤
√
2‖κφℓ

‖opti‖vi‖V
≤

√
2‖κφℓ

‖opti‖ui‖V < δ(κφℓ
f)

according to the definition of ti > 1. The second inclusion follows in exactly the
same way.

Returning to equation (11), we have

ti‖γ(vi)− γ(wi)‖2 =
∥∥α
(
σi1κφ1

v′i − τi1κφ1
w′

i . . . σiNκφN
v′i − τiNκφN

w′
i

)∥∥
2

=
∥∥α
(
sort(κφ1

v′i)− sort(κφ1
w′

i) . . . sort(κφN
v′i)− sort(κφN

w′
i)
)∥∥

2

= ‖γ(v′i)− γ(w′
i)‖2.

We finally conclude that

lim
i→∞

‖γ(v′i)− γ(w′
i)‖2

dist(v′i, w
′
i)

≤ lim
i→∞

‖γ(vi)− γ(wi)‖2
dist(vi, wi)

= 0.

Remember that tivi and tiui are bounded sequences that converge to fp+1

and u, respectively, as i → ∞. Therefore, v′i and w′
i are bounded sequences that

converge to f + fp+1 and f + u, respectively. Therefore,

‖γ(f + fp+1)− γ(f + u)‖2 = lim
i→∞

‖γ(v′i)− γ(w′
i)‖2

. lim
i→∞

‖γ(v′i)− γ(w′
i)‖2

dist(v′i, w
′
i)

= 0.

Now, the injectivity of γ̂ implies that f + fp+1 ∼ f + u; i.e., for some g ∈ G,
we have g(f + fp+1) = f + u. It follows that g ∈ H(f): indeed, assume, by
contradiction, that g 6∈ H(f). Then, we have

0 = ‖g(f + fp+1)− (f + u)‖V ≥ ‖(g − e)f‖V − ‖gfp+1 − u‖V
≥ min

g 6∈H(f)
‖(g − e)f‖V − ‖fp+1‖V − ‖u‖V

≥ min
g 6∈H(f)

‖(g − e)f‖V − 2‖u‖V > 0

because

‖u‖V = lim
i→∞

ti‖ui‖V ≤ 1

4
· min
g 6∈H(f)

‖(g − e)f‖V .

Therefore, gfp+1 = u and thus ‖fp+1‖V = ‖u‖V > 0, which shows that fp+1 6=
0. Finally, let w′′

i := g−1w′
i = f + tig

−1ui. Then, the sequences (v
′
i)

∞
i=1, (w

′′
i )

∞
i=1

still achieve lower Lipschitz constant zero. Therefore, they achieve local lower
Lipschitz constant zero at f + fp+1. Now, fp+1 is orthogonal to (fj)

k
j=1 and

satisfies

‖fp+1‖V = lim
i→∞

ti‖vi‖V ≤ lim
i→∞

ti‖ui‖V

=
ǫ√
2
·min

{
min
ℓ∈[N ]

‖κφℓ
‖−1
op δ(κφℓ

f),
1

2
√
2
· min
g 6∈H(f)

‖(g − e)f‖V
}
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Therefore,

∆(κφℓ
fp+1) ≤

√
2 · ‖κφℓ

fp+1‖2 ≤
√
2‖κφℓ

‖op · ‖fp+1‖V
< ‖κφℓ

‖op · min
k∈[N ]

‖κφk
‖−1
op δ(κφk

f) ≤ δ(κφℓ
f)

and the lemma is proven.

Combining the base case and the induction step allows us to prove that
injectivity implies bi-Lipschitz.

Proof of Theorem 1. Remember that γ̂ is Lipschitz continuous according to
Proposition 23. Now, assume by contradiction that γ̂ is not lower Lipschitz
continuous. Then, Lemma 25 together with Lemma 27 show that there exists
an orthogonal basis (fj)

d
j=1 ∈ V such that the local lower Lipschitz constant of

γ̂ vanishes at f := f1 + f2 + · · ·+ fd and

∀ℓ ∈ [N ], k ∈ [d− 1] : ∆(κφℓ
fk+1) < δ

(
k∑

j=1

κφℓ
fj

)
.

It follows from Lemma 26 that γ̂ is not injective: a contradiction.
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