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Abstract—This paper discusses the connec-

tion between the phase retrieval problem and

permutation invariant embeddings. We show

that the real phase retrieval problem for

R
d/O(1) is equivalent to Euclidean embeddings

of the quotient space R
2×d/S2 performed by the

sorting encoder introduced in an earlier work.

In addition, this relationship provides us with

inversion algorithms of the orbits induced by

the group of permutation matrices.

I. Introduction

The phase retrieval problem has a long and

illustrious history involving several Nobel prizes

along the way. The issue of reconstruction from

magnitude of frame coefficients is related to a

significant number of problems that appear in

separate areas of science and engineering. Here is

an incomplete list of some of these applications

and reference papers: crystallography [1], [2], [3];

ptychography [4], [5]; source separation and in-

verse problems [6], [7]; optical data processing

[8]; mutually unbiased bases [9], [10], quantum

state tomography [11], [12]; low-rank matrix com-

pletion problem [13], [14]; tensor algebra and

systems of multivariate polynomial equations

[15], [16], [17]; signal generating models [18], [19],

bandlimited functions [20], [21], radar ambiguity

problem [22], [23], learning and scattering net-

works [24], [25], [26].

In [27], this problem was shown to be a special

form of the following setup. Let H denote a real

or complex vector space and let A = {ai}i∈I

be a frame for H . The phase retrieval problem

asks whether the map H ∋ x 7→ αA(x) =

{|〈 x, ai 〉|}i∈I ∈ l2(I) determines x uniquely up

to a unimodular scalar.

In this paper we focus on the finite dimen-

sional real case of this problem (see also [28]),

namely when H = Rd. In this case, a frame

A = {a1, . . . , aD} ⊂ Rd is simply a spanning

set. The group O(1) = {−1, +1} acts on H by

scalar multiplication. Let Ĥ = H/O(1) denote

the quotient space induced by this action, where

the equivalence classes (orbits) are

[x] = {x, −x} , for x 6= 0 , [x] = {0} , for x = 0.

The analysis operator for this frame is

TA : H → RD , TA(x) = (〈 x, ak 〉)D
k=1. (1)

The relevant nonlinear map αA is given by taking

the absolute value of entries of TA:

αA : H → RD , αA(x) = (|〈 x, ak 〉|)D
k=1. (2)

Notice αA produces a well-defined map on Ĥ,

which, with a slight abuse, but for simplicity

of notation, will be denoted also by αA. Thus

αA([x]) = αA(x).

Another customary notation that is often em-

ployed: a frame is given either as an indexed

set of vectors, A = {a1, . . . , aD}, or through

the columns of a d × D matrix A. The matrix

notation is not canonical, but this is not an

issue here. We always identify H = Rd with

its columns vector representation in its canonical

basis.

Definition 1. We say that (the columns of a

matrix) A ∈ Rd×D form/is a phase retrievable

frame, if αA : R̂d → RD, αA(x) = (|〈 x, ak 〉|)D
k=1

is an injective map (on the quotient space).

In a different line of works [29], [30], [31], [32] it
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was recognized that the phase retrieval problem

is a special case of Euclidean representations of

metric spaces of orbits defined by certain uni-

tary group actions on Hilbert spaces. Specifically,

the setup is as follows. Let V denote a Hilbert

space, and let G be a group acting unitarily on

V . Let V̂ = V/G denote the metric space of

orbits, where the quotient space is induced by

the equivalence relation x, y ∈ V , x ∼ y iff

y = g.x, for some g ∈ G. Here g.x represents

the action of the group element g ∈ G on vector

x. For the purposes of this paper we specialize

to the finite dimensional real case, V = Rn×d

and G = Sn, is the group of n × n permutation

matrices acting on V by left multiplication. Other

cases are discussed in aforementioned papers. In

particular, in [30] the authors have shown a

deep connection to graph deep learning problems.

In [31], the authors linked this framework to

certain graph matching problems and more. The

bi-Lipschitz Euclidean embedding problem for

the finite dimensional case is as follows. Given

V̂ = V/G, construct a map β : V → Rm so that,

(i) β(g.x) = β(x) for all g ∈ G, x ∈ V , and (ii)

for some 0 < A ≤ B < ∞, and for all x, y ∈ V ,

A d([x], [y]) ≤ ‖β(x) − β(y)‖ ≤ B d([x], [y])

(3)

where d([x], [y]) = inf
g∈G

‖x − g.y‖V is the natural

metric on the quotient space V̂ .

In [30] the following embedding was intro-

duced. Let A ∈ Rd×D be a fixed matrix (termed

as key) whose columns are denoted by a1, . . . , aD.

The induced encoder βA : V → Rn×D is defined

by

βA(X) =↓ (XA) =
[

Π1Xa1 · · · ΠDXaD

]

(4)

where Πk ∈ Sn is the permutation matrix that

sorts in decreasing order the vector Xak. It

was shown in [30] that, for D large enough, βA

provides a bi-Lipschitz Euclidean embedding of

V̂ . This motivates the following definition.

Definition 2. We say that A ∈ Rd×D is a

universal key for Rn×d if βA : R̂n×d → Rn×D,

βA(X) =↓ (XA) is an injective map (on the

quotient space).

The purpose of this paper is to show the equiv-

alence between the real phase retrieval problem,

specifically the embedding αA, and the permu-

tation invariant embedding βA defined above, in

the special case n = 2.

II. Main Results

Recall the Hilbert spaces H = Rd and V =

R2×d. For A ∈ Rd×D recall also the encoders

αA : Ĥ → RD and βA : V̂ → R2×D given

respectively by αA(x) = (|〈 x, ak 〉|)k∈[D], and

βA(X) =↓ (XA). Our main result reads as fol-

lows.

Theorem 3. In the case n = 2, the following are

equivalent.

1) αA is injective, hence the columns of A form

a phase retrievable frame;

2) βA is injective, hence A is a universal key.

Remark 4. Perhaps it is not surprising that, if

an equivalence between the phase retrieval prob-

lem and permutation invariant representations is

possible, then this should occur for n = 2. This

statement is suggested by the observation that

O(1) is isomorphic with S2, the group of the 2×2

permutation matrices. What is surprising that, in

fact, the two embeddings are intimately related, as

the proof and corollaries show.

Proof of Theorem 3. Let X ∈ V = R2×d. Denote

by x1, x2 ∈ Rd its two rows transposed, that is

X =

[
xT

1

xT
2

]
.

Notice that, for each k ∈ [D], the kth column of

βA(X) is given by

↓ (Xak) =

[
max(〈 x1, ak 〉, 〈 x2, ak 〉)

min(〈 x1, ak 〉, 〈 x2, ak 〉)

]
.

The key observations are the following relation-

ships between min, max, and the absolute value

| · |:

|u − v| = max(u, v) − min(u, v)

u + v = max(u, v) + min(u, v)

max(u, v) =
1

2
(u + v + |u − v|)

min(u, v) =
1

2
(u + v − |u − v|)

| |u| − |v| | = min(|u − v|, |u + v|)



In particular, these show that:
[
1 −1

1 1

]
βA(X) =

[
1 −1

1 1

]
· ↓ (XA) =

=

[
|〈 x1 − x2, a1 〉|, . . . , |〈 x1 − x2, aD 〉|

〈 x1 + x2, a1 〉, . . . , 〈 x1 − x2, aD 〉

]

=

[
(αA(x1 − x2))T

(TA(x1 + x2))T

]

Where, TA was introduced in equation (1).

(1) → (2) : Suppose that αA is injective. Let

X =

[
xT

1

xT
2

]
and Y =

[
yT

1

yT
2

]
, such that βA(X) =

βA(Y ). Then
[
1 −1

1 1

]
βA(X) =

[
1 −1

1 1

]
βA(Y )

=⇒

[
(αA(x1 − x2))T

TA(x1 + x2)T

]
=

[
(αA(y1 − y2))T

TA(y1 + y2)T

]
.

But now, αA(x1 − x2) = αA(y1 − y2)) =⇒ x1 −

x2 = y1 − y2 or x1 − x2 = y2 − y1 and

TA(x1+x2) = TA(y1+y2)T =⇒ x1+x2 = y1+y2

Thus we have that
{

x1 = y1

x2 = y2

}
or

{
x1 = y2

x2 = y1

}

Either case means

⇐⇒ X = Y or X =

[
0 1

1 0

]
Y

⇐⇒ [X ] = [Y ]

So, βA is injective.

(2) → (1) : Suppose that βA is injective.

Let x, y ∈ Rd such that αA(x) = αA(y), i.e.

|〈 x, ak 〉| = |〈 y, ak 〉|, ∀k ∈ [D]. Let X =

[
xT

−xT

]

and Y =

[
yT

−yT

]
. Then,

[
1 −1

1 1

]
βA(X) =

[
αA(2x)T

TA(0)T

]
= 2

[
αA(2x)T

0

]

and
[
1 −1

1 1

]
βA(X) =

[
αA(2y)T

TA(0)T

]
= 2

[
αA(2y)T

0

]

Thus βA(X) = βA(Y ). Since βA is assumed

injective, it follows that X = Y or X =

[
0 1

1 0

]
Y .

So, x = y or x = −y. We conclude that [x] = [y],

so αA is injective.

Corollary 5. If βA is injective, then D ≥ 2d−1.

Corollary 6. If D = 2d−1, then βA is injective

if and only if A is a full spark frame.

Both results follow necessary and sufficient

conditions established in, e.g. [27]. Recall that

a frame in Rd is said full spark if any subset of d

vectors is linearly independent (hence basis).

Remark 7. Assume D = 2d − 1. Note the

embedding dimension for V̂ = R̂2×d is m =

2(2d − 1) = 4d − 2 = 2 dim(V ) − 2. In particular

this shows the minimal dimension of bi-Lipschitz

Euclidean embeddings may be smaller than twice

the intrinsic dimension of the Hilbert space where

the group acts on. Both papers [30] and [31]

present (bi)Lipschitz embeddings into R2 dim(V ).

Remark 8. As was derived in the proof, αA, βA

and TA are intimately related:

βA

([
xT

1

xT
2

])
=

1

2

[
1 1

−1 1

] [
αA(x1 − x2)T

TA(x1 + x2)T

]

(5)

In particular, any algorithm for solving the phase

retrieval problem solves also the inversion prob-

lem for βA. Let ωA : RD → Rd denote a

left inverse of αA on the metric space R̂d. This

means ωA(αA(x)) ∼ x in Rd/O(1). Denote by

T †
A a left inverse of the analysis operator (e.g.,

the synthesis operator associated to the canonical

dual frame). Thus T †
ATA = Id. Then an inverse

for βA is:

β−1
A (Y ) =

1

2

[
T †

A(y2) + ωA(y1)

T †
A(y2) − ωA(y1)

]
(6)

where Y =

[
yT

1

yT
2

]
.

Remark 9. Equations (6) suggest a lower di-

mensional embedding than βA. Specifically, first

we compute the average y1 =
1

2
(x1 + x2) which is

of size Rd, and then encode the difference x1 −x2

using αA, y2 = αA(x1 − x2). We obtain the

following modified encoder, β̃A : R2×d → Rd+D:

β̃A(x) =
[ 1

2
(x1 + x2)T αA(x1 − x2)T

]
. (7)

With the ωA left inverse of αA, the inverse of β̃A



is given by:

β̃−1
A (Y ) =


 y1 +

1

2
ωA(y2)

y1 −
1

2
ωA(y2)


 (8)

where y1 = Y (1 : d) and y2 = Y (d+1 : d+D). In

the case when D = Dmin = 2d − 1, the minimal

embedding dimension is m = d + D = 3d − 1

(instead of 4d − 2 or 4d = 2 dim(V )).

Reference [30] shows that an upper Lipschitz

bound for embedding βA is σ1(A), where σ1(A)

is the largest singular value of A. Same reference

shows that if βA is injective then there is also

a strictly positive lower Lipschitz bound without

providing a formula. Using Equation (5) we pro-

vide explicit estimates of these bounds.

Theorem 10. Assume A ∈ Rd×D is a universal

key for R2×d (i.e., βA : R̂2×d → R2×D is

injective), or, equivalently (according to Theorem

3), the columns of A form a phase retrievable

frame in Rd (i.e., αA : R̂d → RD is injective).

Then both αA and βA are bi-Lipschitz with same

Lipschitz constants, where distances are given by

dPR([x], [y]) = min(‖x − y‖, ‖x + y‖) on Ĥ, and

d([X ], [Y ]) = min
P ∈S2

‖X − P Y ‖ on V̂ , respectively.

The optimal lower and upper Lipschitz constants

are given by:

A0 = min
I⊂[D]

√
σ2

d(A[I]) + σ2
d(A[Ic]) , B0 = σ1(A)

(9)

where σ1(A) is the largest singular value of A

(equals the square-root of upper frame bound) and

σd(A[J ]) is the dth singular value of submatrix of

A indexed by J . Furthermore, these bounds are

achieved by the following vectors. Let I0 denote

a optimal partition in (9) and let u1, u2 denote

the normalized left singular vectors of A[I0] and

A[Ic
0 ], respectively, each associated to the dth sin-

gular value. Let u be the normalized principal left

singular vector associated to A.(i.e., associated to

the largest singular value). Then:

1) The upper Lipschitz constant B0 is achieved

as follows: (i) for map αA by vectors xmax =

u and ymax = 0; (ii) for map βA by vectors

Xmax =

[
uT

0

]
and Ymax = 0.

2) The lower Lipschitz constant A0 is achieved

as follows: (i) for map αA by vectors xmin =

u1 + u2 and ymin = u1 − u2; (ii) for map

βA by vectors Xmin =

[
(u1 + u2)T

0

]
and

Ymin =

[
uT

1

uT
2

]
.

Remark 11. The optimal Lipschitz constants

for the map αA were obtained in [33], [34],

including the optimizers. However, for reader’s

convenience, we prefer to give direct proofs of

these results.

Proof. 1) Upper Lipschitz constants.

(i) Let x, y ∈ Rd. Then

‖αA(x)−αA(y)‖2=
∑

D

i=1
||〈 ai,x 〉|−|〈 ai,y 〉||2=

=
∑

D

i=1
min(|〈 ai,x−y 〉|2,|〈 ai,x+y 〉|2)≤

≤min
(∑

D

i=1
|〈 ai,x−y 〉|2,

∑
D

i=1
|〈 ai,x+y 〉|2

)

≤σ2

1
(A) dPR([x],[y])2.

So σ1(A) is an upper Lipschitz bound for

the map αA. Now for xmax = u, ymax = 0

notice that

‖α(xmax)−α(ymax)‖2=
∑

D

i=1
|〈 ai,u 〉|2=

=σ2

1
(A)‖u‖2=σ2

1
(A) dPR([xmax],[ymax])2.

Thus, the upper Lipschitz constant σ1(A) is

in fact optimal (tight).

(ii) Map βA. Let X, Y ∈ R2×D and P0 ∈

S2 be a permutation that achieves the dis-

tance between X and Y , i.e. ‖X − P0Y ‖ =

d([X ], [Y ]). Note that

‖βA(X)−βA(Y )‖2=
∑

D

k=1
‖(ΠkX−ΞkY )ak‖2=

=
∑

D

k=1
‖(ΞT

k ΠkX−Y )ak‖
2

for some Πk, Ξk ∈ S2 that align the vectors.

From rearrangement lemma we have that

‖(ΠkX−ΞkY )ak‖≤‖(X−P0Y )ak‖, ∀k∈[D]

so,

∑
D

k=1
‖(ΞT

k ΠkX−Y )ak‖
2
≤‖A‖2‖‖X − P0Y ‖‖2

=σ2

1
(A) d([X],[Y ])2.

Therefore, we conclude that σ1(A) is an

upper Lipschitz constant for map βA. We

still need to show that this bound is achieved

(i.e., it is optimal). For Xmax and Ymax

defined in part 1) of theorem 10,

‖βA(Xmax)−βA(Ymax)‖2=‖βA(Xmax)‖2=
∑

D

k=1
〈 u,ak 〉2=σ2

1
(A).

and d(Xmax, Ymax) = 1. Thus B0 is the



optimal Lipschitz constant both for αA and

for βA.

2) Lower Lipschitz constants.

(i) Let x, y ∈ Rd and define the auxiliary set

S=S(x,y):={j∈[D] :| 〈 x−y,aj 〉|≤|〈 x+y,aj 〉|}

Then

‖α(x)−α(y)‖2=
∑

D

i=1
||〈 ai,x 〉|−|〈 ai,y 〉||2=

=
∑

i∈S
|〈 ai,x−y 〉|2+

∑
i∈Sc

|〈 ai,x+y 〉|2≥

σ2

d(A[S])+σ2

d(A[Sc]) dPR([x],[y])2≥A2

0
dPR([x],[y])2.

So A0 is a lower Lipschitz bound for αA, but

we still need to show that it is optimal.

Let I0 be the optimal partition, and let u1,

u2 be normalized left singular vectors as in

the statement of Theorem 10. Then:

‖αA(u1+u2)−αA(u1−u2)‖2=

=
∑

D

i=1
||〈 ai,u1+u2 〉|−|〈 ai,u1−u2 〉||2=

=
∑

D

i=1
min(|〈 ai,2u2 〉|2,|〈 ai,2u1 〉|2)≤

≤4

(∑
i∈I0

|〈 ai,u1 〉|2+
∑

i∈Ic
0

|〈 ai,u2 〉|2

)

=4(σ2

d(A[I0])+σ2

d(A[Ic
0

]))=A2

0
dPR([u1+u2],[u1−u2])2,

where we used again that | |a| − |b| | =

min(|a−b|, |a+b|) for any two real numbers

a, b ∈ R, and, for the inequality, at every

i ∈ [D] we made a choice between the two

terms. Since the reverse inequality is also

true, it follows that xmin = u1 + u2 and

ymin = u1 − u2 achieve the lower bound A0

for αA.

(ii) Consider now the map βA. Let X, Y ∈

R2×d and define the auxiliary set

S=S(X,Y ):={j∈[D] :| 〈 x1−x2−y1+y2,aj 〉|≤

≤|〈 x1−x2+y1−y2,aj 〉|}

Then, using Equation (5) we have that

‖βA(X)−βA(Y )‖2=

1

2 (‖αA(x1−x2)−αA(y1−y2)‖2+‖TA(x1+x2−y1−y2)‖2)=

1

2

∑
j∈S

|〈 x1−x2−y1+y2,aj 〉|2+|〈 x1+x2−y1−y2,aj 〉|2+

+ 1

2

∑
j∈Sc |〈 x1−x2+y1−y2,aj 〉|2+|〈 x1+x2−y1−y2,aj 〉|2=

=
∑

j∈S
|〈 x1−y1,aj 〉|2+|〈 x2−y2,aj 〉|2+

+
∑

j∈Sc
|〈 x1−y2,aj 〉|2+|〈 x2−y1,aj 〉|2≥

≥σ2

d(A[S])(‖x1−y1‖2+‖x2−y2‖2)+

+σ2

d(A[Sc])(‖x1−y2‖2+‖x2−y1‖2)≥

≥A2

0
d([X],[Y ])2.

Therefore A0 is a lower Lipschitz constant

for βA.

It remained to prove that this bound is tight,

i.e., it is achieved. Let Xmin and Ymin be as

in the statement of Theorem 10. Then

‖βA(Xmin)−βA(Ymin)‖2=

1

2 (‖αA(u1+u2)−αA(u1−u2)‖2+‖TA(u1+u2−u1−u2)‖2)=

1

2 (‖αA(u1+u2)−αA(u1−u2)‖2)=A2

0
d([Xmin],[Ymin])2

where the last equality follows from the fact

that the lower Lipschitz constant of αA is

achieved by u1 + u2 and u1 − u2, and the

fact that d([Xmin], [Ymin])2 = 2.

So A0 is indeed the optimal lower Lipschitz

constant for βA.

III. Conclusion

In this paper we analyzed two representation

problems, one arising in the phase retrieval prob-

lem and the other one in the context of per-

mutation invariant representations. We showed

that the real phase retrieval problem in a finite

dimensional vector space H is entirely equivalent

to the permutation invariant representations for

the space V = R2×dim(H). Our analysis proved

that phase retrievability is equivalent to the

universal key property in the case of encoding

2 × d matrices. This result is derived based on

the lattice space structure (R, +, min, max). It

is still an open problem to understand the rela-

tionship between αA and βA in the case n > 2.

A related problem is the implementation of the

sorting operator using a neural network that

has ReLU as activation function (or, even the

absolute value | · |). Efficient implementations

of such operator may yield novel relationships

between αA and βA, in the case n ≥ 3.
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