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Abstract

Consider a real vector space V and a finite group G acting uni-

tarily on V . We study the general problem of constructing a stable

embedding whose domain is the quotient of the vector space modulo

the group action, and whose target space is a Euclidean space. We

construct an embedding Ψ and we study under which assumptions Ψ

is injective in the quotient vector space. The embedding scheme we

introduce is based on selecting a fixed subset from the sorted orbit

↓ 〈Ugwi, x〉g∈G, where wi are appropriate vectors.

1 Introduction

Machine learning techniques have impressive results when we feed them with
large sets of data. In some cases, our training set can be small but we
know that there are some underlying symmetries in the data structure. For
example, in graph theory problems each graph is being represented as an
adjacent matrix of the labeled nodes of the graph; any relabeling of the nodes
shouldn’t change the output of our classification or regression algorithm.

A possible solution for this problem is to increase our training set by
adding, for each data point of the set, the whole orbit generated by the
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group action. One problem that arises is that it is computationally costly to
find such highly symmetric function.

Another solution is to embed our data into an Euclidean space R
m with

a symmetry-invariant embedding Ψ and then use R
m as our feature space.

It is not enough for our embedding to be symmetric invariant, it should also
separate data orbits. Finally, we require certain stability conditions so that
small perturbations don’t affect our predictions. This problem is an instance
of invariant machine learning [19, 3, 15, 10, 20, 28, 14, 16, 21].

The most common group action in invariant machine learning are permu-
tations [25, 11, 7] reflections [22] and translations [18]. Also, there are very
interesting results in the case of equivariant machine learning [24, 20, 27, 26,
9].

Our work is influenced by [15] where it is shown that m ≈ 2d separating
invariants are enough for an orbit-separating embedding, and by [12, 23]
where the max filter is introduced. We work with a generalization of the max
filter : instead of choosing the maximum element of the orbit we choose other
subsets of orbit. The problem of finding permutation invariant embeddings
seems to be closely connected to the phase retrieval problem where there
already are a lot of important results [5, 6, 2, 1, 4, 17].

In the first chapter, we introduce our embedding scheme.
In the second chapter, we investigate and construct an injective embed-

ding for the case of a finite subset of a vector space V .
Finally, in the third chapter, we present an injective Coorbit embedding

for a d-dimensional vector space V .

1.1 Notation

Let (V , 〈·, ·〉) be a d-dimensional real vector space, where d ≥ 2. Assume
(G, ·) is a finite group of order |G| = N acting unitarily on V . For every

g ∈ G, we denote by Ugx the group action. On V̂ = V / ∼, the quotient
space with respect to action of group G, we denote by [x] the orbit of vector

x, i.e. [x] = {Ugx : g ∈ G}. Consider now the natural metric, d : V̂ ×V̂ → R,
where

d([x], [y]) = min
h1,h2∈G

‖Uh1x− Uh2y‖ = min
g∈G

‖x− Ugy‖.

Our goal is to construct a bi-Lipschitz Euclidean embedding on the metric
space (V̂ , d). Specifically, we want to construct a function Ψ : V → R

m such
that
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1. Ψ(Ugx) = Ψ(x), ∀x ∈ V , ∀g ∈ G,

2. If x, y ∈ V are such that Ψ(x) = Ψ(y), then there exist g ∈ G such
that y = Ugx,

3. There are 0 < a < b < ∞ such that for any x, y ∈ V

a d([x], [y])2 ≤ ‖Ψ(x) − Ψ(y)‖2 ≤ b(d([x], [y]))2.

The invariance property (1) lifts Ψ to a map Ψ̂ acting on the quotient

space V̂ = V / ∼, where x ∼ y if and only if y = Ugx for some g ∈ G:

Ψ̂ : V̂ → R
m, Ψ̂([x]) = Ψ(x), ∀[x] ∈ V̂ .

If a G-invariant map Ψ satisfies property (2) we say that Ψ separates the
G-orbits in R

d.
Our construction for the embedding Ψ is based on a non-linear sorting

map.

Definition 1.1. Let ↓ : Rr → R
r be the operator that takes as input a vector

in R
r and returns a sorted, in decreasing order, vector of length r with same

entries as input vector.

For a number p ∈ N, fix a p-tuple of vectors w = (w1, . . . , wp) ∈ V p. For
any i ∈ [p] and j ∈ [N ] we define the operator Φwi,j : V → R so that Φwi,j(x)
is the j-th coordinate of vector ↓ 〈Ugwi, x〉g∈G. Now fix a set S ⊂ [N ] × [p]
such that |S| = m, and for i ∈ [p], set Si = {k ∈ [N ] : (k, i) ∈ S}. We denote
by mi the cardinality of the set Si, thus m =

∑p
i=1 mi. Let ℓ : Rm → R

2d be
a linear transformation and consider the map,

Ψ = Ψw,S,ℓ = ℓ ◦ Φw,S : V → R
2d

with
Φw,S(x) = [↓{Φw1,j(x)}j∈S1 , . . . , ↓{Φwp,j(x)}j∈Sp

] ∈ R
m. (1)

Therefore, our proposal for constructing a stable embedding is the func-
tion Ψ of the form

Ψ(x) = Ψw,S,ℓ(x) = ℓ(Φw,S(x)).

For the rest of the paper when the p-tuple of vectors w is clearly implied
we will denote by Φi,j the Φwi,j. Also by {g1, . . . , gN}, we will denote an
arbitrarily, but fixed, enumeration of the group G.
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1.2 Semialgebraic geometry notation

In this section we will follow the notation of [13].

Definition 1.2. An affine algebraic variety is the set of common zeros over
an algebraically closed field k of some family of polynomials.

Remark 1.3. In literature sometimes in the definition of affine variety is
required the ideal generated by defining polynomials to be prime. In this paper
we will call that case irreducible variety.

A generalization of algebraic sets is found in semialgebraic sets, which
encompass polynomial inequalities in addition to algebraic equations.

Definition 1.4. Let F be a real closed field. A subset S of Fn is a ”semialge-
braic set” if it is a finite union of sets defined by polynomial equalities of the
form {(x1, ..., xn) ∈ F

n | P (x1, ..., xn) = 0} and of sets defined by polynomial
inequalities of the form {(x1, ..., xn) ∈ F

n | Q(x1, ..., xn) > 0}.

Definition 1.5. Let X, Y be two varieties. A continuous map f : X → Y
is called morphism if ∀p ∈ X there is a Zariski open set U containing p and
polynomials functions g and g such that ∀q ∈ U , f(q) = g(q)

h(q)
and h(q) 6= 0.

Now we will state some results from [13] without proof.

Proposition 1.6 (Proposition 2.15 in [13]). A semialgebraic set A can be
decomposed as the disjoint union of finitely many pieces which are semialge-
braically homeomorphic to open hypercubes (0, 1)di of different dimensions.

Definition 1.7. Let A be decomposed as the disjoint union of finitely many
pieces which are semialgebraically homeomorphic to open hypercubes {(0, 1)di}i∈I .
Then we define the dimension of A to be the maximum dimension of huper-
cubes (0, 1)di, i.e. dim(A) = maxi∈I di.

Two corollaries of Tarski-Seidenberg theorem are the following:

Corollary 1.8 (Corollary 2.4 in [13]). If A is a semialgebraic subset of Rn+k,
its image by the projection on the space of the first n coordinates is a semi-
algebraic subset of Rn.

Corollary 1.9 (Corollary 2.5 in [13]). If A is a semialgebraic subset of Rn,
its closure in R

n is again semialgebraic.
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Let A ⊂ R
m and B ⊂ R

n be semialgebraic sets. A mapping f : A → B
is called semialgebraic if its graph:

Γf = {(x, y) ∈ A× B : y = f(x)}

is a semialgebraic set of Rm × R
n.

Proposition 1.10 (Corollary 2.9 and 2.2.1 in [13]). 1. If f : A → B is a
morphism, then it is also semialgebraic.

2. The direct image and the inverse image of a semialgebraic set by a
semialgebraic mapping are semialgebraic.

3. The composition of two semialgebraic mappings is semialgebraic.

A simple corollary of Corollary 1.8 anf Proposition 1.10(1),(2) is the fol-
lowing:

Corollary 1.11. Let A ⊂ R
m and B ⊂ R

n be semialgebraic sets and f :
A → B be a morphism. Then f(A) is also an algebraic set.

Finally two very important theorems of semialgebraic geometry are the
following:

Theorem 1.12 (Theorem 3.18 in [13]). Let A be a semialgebraic subset of
R

n, and f : A → Rk a semialgebraic mapping (not necessarily continuous).
Then dim f(A) ≤ dimA.

Theorem 1.13 (Theorem 3.20 in [13]). Let A ⊂ R
n be a semialgebraic set.

Its dimension as a semialgebraic set is equal to the dimension, as an algebraic
set, of its Zariski closure ĀS.

A simple corollary of Theorem 1.13 is the following:

Corollary 1.14. Let a semialgebraic subset A ⊂ R
N . If dim(A) < n then A

is nowhere dense.

Morevoer, note that any semiaglebraic set consists of finitely many con-
nected components.

Theorem 1.15 (Theorem 2.23 in [13]). Every semialgebraic set has finitely
many connected components which are semialgebraic. Every semialgebraic
set is locally connected.
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Finally, a very usefull Corolarry of ”Hardt’s semialgebraic triviality” is
the following.

Corollary 1.16 (Corolarry 4.2 in [13]). Let A ⊂ R
n be a semialgebraic set

and f : A → R
k a continuous semialgebraic mapping. For d ∈ N, the set

{b ∈ R
k : dim(f−1(b)) = d}

is a semialgebraic subset of Rk of dimension not greater than dim(A) − d.

2 Representations of finite subsets of inner

product spaces

The first case we examine is when A is a finite subset of a real vector space
V . We also assume that A is G-invariant, meaning that for every x ∈ A

and for every g ∈ G, Ugx is also in A .

Theorem 2.1. Let G be a finite subgroup of O(d) and A a finite G-invariant
subset of an inner product space V . Then, for a generic w ∈ V (with respect
to the Zariski topology) and any fixed j ∈ [N ], the map Φw,j is injective on

the quotient space Â and bi-Lipschitz.

Proof. For fixed x, y ∈ A , let

Wx,y =
⋃

h1,h2∈G

{Uh1x− Uh2y}⊥

and
W =

⋃

x,y∈A
x≁y

Wx,y =
⋃

x,y∈A
x≁y

⋃

h1,h2∈G

{Uh1x− Uh2y}⊥.

Given i ∈ [N ] and w ∈ V , recall that Φw,j(x) is the j-th coordinate of vector
↓ 〈Ugw, x〉g∈G. From the definition of the set W we notice that for any vector

w ∈ W c the operator φi
w separates different orbits of elements of A .

Notice that W is a finite union of (d− 1)-dimensional subspaces, making
it a closed set with zero measure and nowhere dense with zero Lebesgue
measure in V . Consequently, for a generic element w ∈ V with respect to
the Zariski topology, it provides an injective embedding φj

w(x). However,
we still need to demonstrate that if the map φj

w(x) is injective, it is also
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bi-Lipschitz. That is to find aw, bw ∈ R with 0 < aw ≤ bw such that for all
x, y ∈ A

aw d(x, y) ≤ |φj
w(x) − φj

w(y)| ≤ bw d(x, y).

As the set A is finite so is A × A . Hence, {d(x, y)|x, y ∈ A , x ≁ y} is a
finite set of positive numbers.

The optimal “bi-Lipschitz constants” are

aw = min
x,y∈A

x≁y

|φj
w(x) − φj

w(y)|

d(x, y)
= min

x,y∈A
x≁y

∣∣∣∣max
g∈G

〈Ugw, x〉 − max
g∈G

〈Ugw, y〉
∣∣∣∣

ming∈G‖Ugx− y‖

and

bw = max
x,y∈A

x≁y

|φj
w(x) − φj

w(x)|

d(x, y)
= max

x,y∈A
x≁y

∣∣∣∣max
g∈G

〈Ugw, x〉 − max
g∈G

〈Ugw, y〉
∣∣∣∣

ming∈G‖Ugx− y‖
.

Notice that the upper Lipschitz bound above is sharp. However, if we
don’t require sharpness, there is a way to find an easily computable upper
Lipschitz bound in the following manner:

Without loss of generality, suppose that

Φw,j(x) ≥ Φw,j(y).

Let gx
j , g

y
j ∈ G such that Φw,j(x) = 〈w,Ugx

j
x〉 and Φw,j(y) = 〈w,Ugy

j
x〉,

respectively, and take g0 ∈ G satisfying d(x, y) = ‖x − Ug0y‖. Then, from
the pigeonhole principle there exists k ≤ j such that 〈w,Ugx

k
g0y〉 ≤ 〈w,Ugy

j
y〉.

Then, we have

|Φw,j(x) − Φw,j(y)| = 〈w,Ugx
j
x〉 − 〈w,Ugy

j
y〉

≤ 〈w,Ugx
k
x〉 − 〈w,Ugx

k
Ug0y〉

= 〈w,Ugx
k
(x− Ug0y)〉

≤ ‖w‖‖x− Ug0y‖

= ‖w‖ d(x, y).

Therefore, bw = ‖w‖ is a also upper Lipschitz bound.
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3 Representation of inner product spaces

Fix w = (w1, . . . , wp) and take S = {(1, 1), . . . , (1, p)} ⊂ [N ] × [p]. Recall
that Si = {k ∈ [N ] : (k, i) ∈ S}. In that case ∀i ∈ [p], Si = {1}, so Φw,S is
the max filter map (〈〈w1, x〉〉, . . . , 〈〈wm, x〉〉)T , where

〈〈wi, x〉〉 = sup
g1,g2∈G

〈Ug1wi, Ug2x〉 = max
g1,g2∈G

〈Ug1wi, Ug2x〉

= max
g∈G

〈Ugwi, x〉 = max
g∈G

〈wi, Ugx〉.

In [11], it is shown that 2d vectors are enough for the construction of an
injective embedding.

Theorem 3.1 ([11, Lemma 12]). Consider any finite subgroup G ≤ O(d).
For a generic w ∈ V p and for S = {(1, 1), . . . , (1, p)}, the map Φw,S separates
G-orbits in R

d provided that p ≥ 2d.

Our goal is to examine the pairs (w, S) where w ∈ V p and S is subset of

[N ] × [p] with m = |S| such that Φ̂A
w

: V̂ → R
m is injective. In other words,

we are interested in all the pairs (w, S) for which the following equivalence
holds for all x, y ∈ V :

Φw,S(x) = Φw,S(y) ⇐⇒ [x] = [y]. (2)

In our next Theorem 3.2, we generalize Theorem 3.1; we show that one
can replace the maximum element of the orbit 〈Ugw, ·〉 with any other fixed
element of that same orbit.

Theorem 3.2. Let p ≥ 2d and S ⊂ [N ] × [p]. Suppose that ∀i ∈ [p], Si 6= ∅.
Then, for a generic with respect to Zariski topology w ∈ V p, the map Φw,S

is injective.

Before we are able to prove Theorem 3.2 we need some additional notation
and certain lemmas. Let V be an inner product space of dimension d, and
G ≤ O(d) a finite subgroup of the group of orthogonal transformations on
V . For a fixed w ∈ V and i ∈ [N ], recall that Φw,j(x) represents the j-th
coordinate of ↓(〈Ugw, x〉g ∈ G). It’s important to note that Φw, j satisfies
specific scaling and symmetry properties, which we state in the form of a
lemma:
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Lemma 3.3. For j, λ and V as above,

Φλw,j(x) = Φw,j(λx) = λΦw,j(x), ∀w, x ∈ V , λ > 0, (3)

Φw,j(x) = Φx,j(w), ∀w, x ∈ V . (4)

For x, y ∈ V and j ∈ [N ], define

Fx,y,j = {w ∈ V : Φw,j(x) = Φw,j(y)}.

If x ∼ y, then clearly Fx,y,j = V . For x, y ∈ V with x ≁ y we want give a
geometrical description of Fx,y,j. Let r1 ∈ G be such that Φw,j(x) = 〈Ur1w, x〉
and r2 ∈ G such that Φw,j(y) = 〈Ur2w, x〉. Then 〈w,Ur−1

1
x− Ur−1

2
y〉 = 0

which implies that

Fx,y,j ⊂
⋃

h1,h2∈G

{Uh1x− Uh2y}⊥. (5)

On the other hand, each {Uh1x−Uh2y}⊥ ⊂ V is a proper hyperplane because
Uh1x − Uh2y 6= 0 for any h1, h2 ∈ G whenever x ≁ y. As a result, we
conclude that Fx,y,j is contained within a finite union of (d− 1)-dimensional
hyperplanes.

For a filter bank w = (w1, . . . , wp) and a set S ⊂ [N ] × [p], we denote
FS as all collections of p-tuples w = (w1, . . . , wp) such that the filter bank
{Φi,j : i ∈ [p], j ∈ [Si]} fails to separate all possible non-equivalent points
x, y ∈ V . This means that,

FS =
{

w ∈ V
p : ∃x, y ∈ V with x ≁ y

and Φi,j(x) = Φi,j(y), ∀i ∈ [p], ∀j ∈ Si

}
.

Following the notation in [15], we will refer to the set FS as the "bad set"
because it contains the set of p-tuples w ∈ V p that fail to construct an
injective embedding Φw,S. We will establish requirements for the set S so
that the "bad set" FS is a subset of a Zariski-closed, proper subset of V p.

Let
Γ = {(x, y) ∈ V

2 : x ≁ y} (6)

be the set of all non-equivalent pairs of vectors. It’s important to notice that
Γ is an open set, with its complement being a finite union of closed linear

9



subspaces of dimension d = dim(V ). If the assumptions of Theorem 3.2 are
satisfied, we can observe that

FA ⊂
⋃

(x,y)∈Γ

⋃

h1,...,h2p∈G

(
{Uh1x− Uh2y}⊥ × · · · × {Uh2p−1x− Uh2p

y}⊥
)

=
N⋃

h1,...,h2p=1

⋃

(x,y)∈Γ

(
{Uh1x− Uh2y}⊥ × · · · × {Uh2p−1x− Uh2p

y}⊥
)
.

For fixed {h1, . . . , h2p} ∈ G, set

Fh1,...,h2p
=

⋃

(x,y)∈Γ

{Uh1x− Uh2y}⊥ × · · · × {Uh2p−1x− Uh2p
y}⊥.

Notice that because G is a finite group in order to prove Theorem 3.1 is
enough to show that the for any choice of h1, . . . , h2p ∈ G the set (Fh1,...,h2p

)c

contains a Zariski open nonempty subset of V p.
Recall that the groupG has sizeN = |G|. For fixed 2p elements h1, . . . , h2p ∈

G, we denote by hg1,...,g2p
: V × V → V p the linear map

fh1,...,h2p
(x, y) = (Uh1x− Uh2y, . . . , Uh2p−1x− Uh2p

y).

Observe that

dim(Ran(fh1,...,h2p
)) = dim(V × V ) ≤ 2d− r

where r = dim(ker(fg1,...,g2p
)).

Next, let C = fh1,...,h2p
(Γ) denote the image of set Γ through the linear

map fh1,...,h2p
. Note that C is a semialgebraic subset of V p of dimension

2d− r.
Consider the set

B = C ∩ S1(V
p).

We have already shown that C is an open subset of a 2d − r-dimensional
subspace of V p. Thus, B is an open subset of the (2d − r − 1)-dimensional
unit sphere in V p, and hence a (2d− r − 1)-smooth manifold.

Moreover C is an semialgebraic set, so it is a semialgebraic set of dimen-
sion (2d− r − 1).

Now, let w = (w1, . . . , wp) ∈ (V \ {0})p. For easiness of notation we
define {0 ⊕x⊕ 0}i

p ∈ V p to be the element of vector space V p, where in i-th
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entry is the vector x and all other p−1 entries are equal with the zero vector.
Throughout the rest of this paper and for each such w, we fix a choice of
p(d− 1) vectors h1, . . . , hp(d−1) ∈ V p so that the set

{
{0 ⊕

w1

‖w1‖
⊕ 0}1

p, . . . , {0 ⊕
wp

‖wp‖
⊕ 0}p

p, h1, . . . , hp(d−1)

}

forms a basis in V p. The choice of hi’s need not change continuously with
w. Using Gram-Schmidt, we turn this set into an orthonormal basis in V p

of the form
{

{0 ⊕
w1

‖w1‖
⊕ 0}1

p, . . . , {0 ⊕
w1

‖w1‖
⊕ 0}p

p, e
w

1 , . . . , e
w

p(d−1)

}
.

Of course, the vectors ew

1 , . . . , e
w

p(d−1) depend on w as well as on the choices
of the auxiliary p(d − 1) vectors h1, . . . , hp(d−1). However, we shall discard
the implicit dependency on these auxiliary vectors hi’s from our notation.

For each w = (w1, . . . , wp) ∈ (V \ {0})p there is a ball of radius ρw > 0,
Uw := B(ρw,w) ⊂ V

p open in the ambient space centered at w such that
for all v = (v1, . . . vp) ∈ B(2ρw,w) we have that the pd vectors

{
{0 ⊕

v1

‖v1‖
⊕ 0}1

p, . . . , {0 ⊕
vp

‖vp‖
⊕ 0}p

p, e
w

1 , . . . , e
w

p(d−1)

}

still span the V p. Note that ew

1 , . . . , e
w

p(d−1) depend on w but are indepen-
dent from v Using Gram-Schmidt process we transform this, non necessary
orthonormal, basis, into the orthonormal basis

{
{0 ⊕

v1

‖v1‖
⊕ 0}1

p, . . . , {0 ⊕
vp

‖vp‖
⊕ 0}p

p, e
w,v
1 , . . . , ew,v

p(d−1)

}
.

Note that each element of the orthonormal basis we constructed, depends
continuously on v.

For fixed x = (x1, . . . , xp) ∈ V p, denote by Fx the linear subspace

Fx = {y = (y1, . . . , yp) ∈ V
p : 〈y1, x1〉 = · · · = 〈yp, xp〉 = 0}.

Note that for each w ∈ (V \ {0})p and v ∈ Uw, the orthonormal set
e

w,v
1 , . . . , ew,v

p(d−1) is an orthonormal basis for the linear space Fv.
Now for M ⊂ (V \ {0})p, let EM = {(x,y) : x ∈ M,y ∈ Fx} denote a

subset of V 2p and π : EM → M be the projection on the first component,
i.e. π(x,y) = x.
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Proposition 3.4. Suppose that M ⊂ (V \ {0})p is a k-dimensional alge-
braic variety. Then, (EM , π,M) is an real analytic vector bundle with a
k-dimensional base M , bundle projection π, k + p(d − 1)-dimensional total
space EM , and linear fibers of dimension p(d− 1).

Proof. For each w = (w1, . . . , wp) ∈ M , consider the map ψw : π−1(Uw) →
Uw × R

p(d−1) defined by

ψx(v, z) = (v, (〈z, ew,v
1 〉, . . . , 〈z, ew,v

p(d−1)〉))

where v = (v1, . . . , vp) ∈ Uw, and the map φw : Uw × R
p(d−1) → π−1(Uw)

defined by

φw(v, (c1, . . . , cp(d−1))) = (v,
p(d−1)∑

i=1

cie
w,v
i ).

It is clear that φw ◦ ψw = id and ψw ◦ φw = id and hence both maps
are bijections. Additionally, both φw and ψw are continuous and, there-
fore, homeomorphisms. This shows that (EM , πM ,M) is a topological vector
bundle.

Proposition 3.5. Recall that B = fg1,...,g2p
(Γ) ⊂ (V \{0})m is semialgebraic

set of dimension 2d−r−1, where r = dim(ker fg1,...,g2p
). There exists a finite

collection of trivial vector bundles (Ej , πj, Bj) with base manifolds Bj of same
dimension, bundle projections πj, total spaces Ej = EBj

(compatible with the
definition EM introduced earlier), and linear fibers of dimension m(d − 1)
such that

⋃
j Cj = C and

⋃
j Ej = EB. Thus, (Ej , πj , Bj) provide a finite

cover for the vector bundle (EB, π, C).

Proof. We want to find a finite cover, {Bj}
L
j=1, of B so that each (Ej , πj, Bj)

is a trivial vector bundle.
The product of unit spheres S1(V )p is compact, and hence we can find

a finite collection {wi}
L
i=1, wi ∈ S1(V )p such that {Uwi

}L
i=1 is a cover of

S1(V )p, where each Uw is some ball centred at w. Next, define

Ũw = {v = (v1, . . . , vp) ∈ (V \ {0})p : (
v1

‖v1‖
, . . . ,

vp

‖vp‖
) ∈ Uw},

and note that the sets Bi = Ũwi
∩B, for i ∈ [L], form a finite cover of B.

Now, we will show that the triple (Ej , π, Bj) is a trivial vector bundle.
For this, we have to find p(d − 1) independent global sections. For any v =
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(v1, . . . , vp) ∈ Bj , recall that the following set of vectors forms an orthonormal
basis:

{
{0 ⊕

v1

‖v1‖
⊕ 0}1

p, . . . , {0 ⊕
vp

‖vp‖
⊕ 0}p

p, e
w,v
1 , . . . , ew,v

p(d−1)

}
.

Now, if we define the maps sl,j : Bj → Ej by

sl(v) = (v, e
wj ,v
l ),

it is clear that {sl,j}
p(d−1)
l=1 forms a set of p(d− 1) independent global sections

in Bj. We conclude that (Bj , π, Ej) is a trivial vector bundle.

Now we can complete the proof of Theorem 3.2.

Proof of Theorem 3.2. Now, define the map Pj : Bj × R
p(d−1) → V p by

Pj(v, c) =
p(d−1)∑

i=1

cie
w

j ,v
i .

We have already shown that for a fixed w ∈ V p the mapping v 7→
ew,v is semialgebraic, hence Pj is also morphism as a linear combination of
semialgebraic maps. Observe that

⋃

j

Pj(Bj × R
p(d−1)) = Fg1,...,g2p

.

Notice that Bj is an semialgebraic set as a intersection of two semialge-
braic sets, so Bj × R

p(d−1) is a semialgebraic set of dimension

2d− r − 1 + p(d− 1) ≤ 2d− 1 + p(d− 1)

and also that
p ≥ 2d =⇒ 2d− 1 + p(d− 1) < pd.

For every j, Pj is semialgebraic, and Bj × R
p(d−1) is a semialgebraic set of

dimension at most 2d−1+p(d−1), so from theorem 1.12 Pj(Bj ×R
p(d−1)) is a

semialgebraic set of dimension at most 2d−1+p(d−1) and from corollary 1.14
it is a nowhere dense set with zero Lebesgue measure.
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3.1 Coorbit embedding

Up to this point, we have focused on the scenario where we used only one
element from each column of the matrix S for the construction of the em-
bedding Φw,S. Now, we aim to explore the situation where we are permitted
to use more than one element from each column.

We will demonstrate that in this case, one can find p smaller than 2d such
that for almost every w ∈ V p, the mapping Φw,S is injective in the quotient

space V̂ .

Theorem 3.6. Let G be a finite group acting unitarily on V ∼= R
d. For

1 ≤ n ≤ N − 1, let γn be the n-th entry of the sorted in decreasing order
vector

γ =↓ { min
λ∈Sp(g)

rank[g − λ I]}g 6=Id

where

Sp(g) = {λ ∈ R : det(Ug − λ I) = 0}

and

pn = 2d− γN−n+1.

Notice that pn ≥ d + 1. Choose an integer p such that pn ≤ p ≤ 2d and a
set S ⊂ [p] × [N ] such that |Sk| = n for 1 ≤ i ≤ 2d − p and |Si| = 1 for
2d− p+ 1 ≤ i ≤ p. Note that S has cardinality of m = (2d− p)n+ 2p− 2d.
Then, for a generic with respect to Zariski topology, w ∈ V p, the map Φw,S

is injective, i.e. for all x, y ∈ V it holds

Φw,S(x) = Φw,S(y) ⇐⇒ x ∼ y.

To prove Theorem 3.6, we will employ a procedure similar to the one used
for Theorem 3.2, and thus, our notation will also be analogous.

Recall that

FS = {w ∈ V
p : ∃(x, y) ∈ Γ such that Φi,j(x) = Φi,j(y) ∀(i, j) ∈ S}

where Γ has been defined in (6).
To establish the proof of Theorem 3.6, it suffices to demonstrate that for

every S satisfying the assumptions of the theorem, the set (FS)c contains a
Zariski open nonempty of V p.

14



For fixed r ∈ [N ] we define the set of group elements

H∗
r = {gi1, . . . , gir

∈ Gr : 1 ≤ i1 < · · · < ir ≤ N}.

Notice that

FS = {w ∈ V
p : ∃x, y ∈ V , x ≁ y : Φi,j(x) = Φi,j(y), ∀(i, j) ∈ S}

⊂
⋃

(x,y)∈Γ

⋃

π1,...,πp∈SN

σ1,...,σp∈SN

{w ∈ V
p : 〈x, Ugπi(j)

wi〉 = 〈y, Ugσi(j)
wi〉, ∀(i, j) ∈ S}

=
⋃

π1,...,πp∈SN

σ1,...,σp∈SN

⋃

(x,y)∈Γ

p⊗

k=1

{w ∈ V
p : 〈U−1

gπi(j)
x− Ugσi(j)

y, wi〉 = 0, ∀(i, j) ∈ S}

=
⋃

ai,bi∈H∗

mi

⋃

(x,y)∈Γ

p⊗

i=1

( mi⋂

j=1

{Uai(j)x− Ubi(j)y}⊥
)
.

For fixed ai, bi ∈ H∗
mi

, i ∈ [p] , we introduce the set

Fa1,...,ap

b1,...,bp

=
⋃

(x,y)∈Γ

( p⊗

i=1

mi⋂

j=1

{Uai(j)x− Ubi(j)y}⊥
)
.

Notice that because group G is finite, it suffices to show that for any
choice of ai, bi ∈ H∗

mi
, i ∈ [p] where mi and p satisfy the requirements of

Theorem 3.1, the set (Fa1,...,ap

b1,...,bp

)c contains a Zariski open, subset of V p.

Definition 3.7. For fixed r ∈ [N ], q ∈ [r − 1] and a, b ∈ H∗
r , we define the

following set:

Γa,b
q = {(x, y) : dim(span(Ua(1)x−Ub(1)y, . . . , Ua(mi)x−Ub(mi)y)⊥) ≥ d−r+q}.

Furthermore, for q ∈ [r − 2], let

∆a,b
q = Γa,b

q \ Γa,b
q+1 =

= {(x, y) ∈ V
2 : dim(span(Ua(1)x− Ua(1)y, . . . , Ua(r)x− Ua(r)y)⊥) = d− r + q}.

Also, for ai, bi ∈ H∗
mi

, i ∈ [p] and x, y ∈ V , let

qi = mi − dim(span(Uai(1)x− Ubi(1)y, . . . , Uai(mi)x− Ubi(mi)y)).
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Notice that

Γ ⊂
⋃

q1,...,qp

qi∈[mi−1]

p⋂

k=1

∆ak ,bk
qk

.

Therefore,

Fa1,...,ap

b1,...,bp

⊂
⋃

q1,...,qp

qi≤mi−1

⋃

(x,y)∈
⋂p

k=1
∆

ak,bk
qk

( p⊗

i=1

span(Uai(1)x− Ubi(1)y, . . . , Uai(mi)x− Ubi(mi)y)⊥
)
.

Recall that Theorem 3.6 assumes that m1 = · · · = mq = n and mq+1 =
· · · = mp = 1. Let

F
1
a1,...,ap

b1,...,bp

=
⋃

(x,y)∈
⋂p

k=1
∆

ak,bk
mk−1

( p⊗

i=1

span(Uai(1)x− Ubi(1)y, . . . , Uai(mi)x− Ubi(mi)y)⊥
)

and

F
2
a1,...,ap

b1,...,bp

=
⋃

q1,...,qp

qi≤mi−2,i∈[q]

⋃

(x,y)∈
⋂p

k=1
∆

ak,bk
qk

( p⊗

i=1

span(Uai(1)x− Ubi(1)y, . . . , Uai(mi)x− Ubi(mi)y)⊥
)

Notice that for a, b ∈ H∗
n

Γa,b
n−1 = ∆a,b

n−1 = {(x, y) ∈ V
2 : ∃ccc = (c1, . . . , cn−1) ∈ R

n−1

: (Ua(1)x− Ub(1)y − ci(Ua(i+1)x− Ub(i+1)y) = 0, ∀i ∈ [n− 1]}.

We define Λi = (λi−1, λi) for i ∈ [k + 1], where by a slightly abuse of
notation we let λ0 = −∞ and λk+1 = +∞. For fixed a, b ∈ H∗

n let the map
ℓa,b : Rn−1 × V 2 → V n−1 defined by,

ℓa,b(c1, . . . , cn−1, x, y) =Ua(1)x− Ub(1)y − c1(Ua(2)x− Ub(2)y),

. . . ,Ua(1)x− Ub(1)y − cn−1(Ua(n)x− Ub(n)y).

We also define the following auxiliary set:

Γ1
a1,...,ap

b1,...,bp

={(CCC, x, y) ∈ R
q×(n−1) × Γ : ℓai,bi

(CiCiCi, x, y) = 0, ∀i ∈ [q]}.
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Notice that

F
1
a1,...,ap

b1,...,bp

⊂
⋃

(CCC,x,y)∈Γ1
a1,...,ap

b1,...,bp

{Ua1(1)x− Ub1(1)y}⊥ × · · · × {Uap(1)x− Ubp(1)y}⊥

and

F
2
a1,...,ap

b1,...,bp

⊂
⋃

q1,...,qp

qi≤mi−2,i∈[q]

⋃

(x,y)∈∩p

k=1
∆

ak,bk
qk

( p⊗

i=1

span(Uai(1)x− Ubi(1)y, . . . , Uai(mi)x− Ubi(mi)y)⊥
)
.

Now we will show some helpful lemmas before showing that F 2
a1,...,ap

b1,...,bp

is a

zero measure subset of V p.
For fixed h1, . . . , h2m ∈ G, let fh1,...,h2m

: V × V → V m denote the linear
map

fh1,...,h2m
(x, y) = (Uh1x− Uh2y, . . . , Uh2m−1x− Uh2m

y).

Now, let

C2 = fh1,...,h2m
(

⋃

q1,...,qp

qi≤mi−2,i∈[q]

p⋂

k=1

∆ak ,bk
qk

)

denote the image of the open set

⋃

q1,...,qp

qi≤mi−2,i∈[q]

p⋂

k=1

∆ak ,bk
qk

⊂ V
2

through the linear map fh1,...,h2m
. Note C2 is a semialgebraic set of dimension

2d− r ≤ 2d.
Following the notation of previous section we define the set,

B2 = C2 ∩ S1(V m).

We have already shown that C2 is a semialgebraic of dimension 2d− r ≤ 2d,
therefore B2 is a open subset of a (2d−r−1)-dimensional unit sphere in V 2d

and hence a semialgebraic set in V m of dimension 2d− r − 1 ≤ 2d− 1.
For fixed w = (w1, . . . , wm) ∈ B2 notice that for every k ∈ [q], exists

(k − 1)n + 1 ≤ ik, jk ≤ kn such that wik
and wjk

are linearly independent
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vectors. After perform permutation on elements {w(k−1)n+1, . . . , wkn, k ∈ [q]}
we can always assume that ik = (k − 1)n + 1 and jk = (k − 1)n + 2 Also,
for any pair (wik

, wjk
), let (e(wik

), e(wjk
)) be the corresponding vectors after

we perform the Gram-Schmidt process to the pair (wik
, wjk

). Notice that we
can choose vectors f1, . . . , fd(p−2) ∈ V so that

{
{0 ⊕ w1 ⊕ 0}1

p, {0 ⊕ w2 ⊕ 0}1
p, {0 ⊕ wn+1 ⊕ 0}2

p,

{0 ⊕ wn+2 ⊕ 0}2
p, . . . , {0 ⊕ w(q−1)n+1 ⊕ 0}q

p, {0 ⊕ w(q−1)n+2 ⊕ 0}q
p,

{0 ⊕ wnq+1 ⊕ 0}q+1
p , . . . , {0 ⊕ wm ⊕ 0}p

p, f1, . . . , fd(p−2)

}

forms a basis in V p. Use Gram-Schmidt to turn this set into an orthonormal
basis in V p of the form
{

{0 ⊕ e(w1) ⊕ 0}1
p, {0 ⊕ e(w2) ⊕ 0}1

p, {0 ⊕ e(wn+1) ⊕ 0}2
p,

{0 ⊕ e(wn+2) ⊕ 0}2
p, . . . , {0 ⊕ e(w(q−1)n+1) ⊕ 0}q

p, . . . , {0 ⊕ e(w(q−1)n+2) ⊕ 0}q
p,

{0 ⊕
wnq+1

‖wnq+1‖
⊕ 0}q+1

p , . . . , {0 ⊕
wm

‖wm‖
⊕ 0}p

p, h1, . . . , hd(p−2)

}

For all v = (v1, . . . vm) ∈ B(2ρw, w) we have that the pd vectors

{
{0 ⊕ e(v1) ⊕ 0}1

p, {0 ⊕ e(v2) ⊕ 0}1
p, {0 ⊕ e(vn+1) ⊕ 0}2

p,

{0 ⊕ e(vn+2) ⊕ 0}2
p, . . . , {0 ⊕ e(v(q−1)n+1) ⊕ 0}q

p, {0 ⊕ e(v(q−1)n+2) ⊕ 0}q
p,

{0 ⊕
vnq+1

‖vnq+1‖
⊕ 0}q+1

p , . . . , {0 ⊕
vm

‖vm‖
⊕ 0}p

p, h1, . . . , hd(p−2)

}

still span the V p. Using Gram-Schmidt process we transform this basis into
an orthonormal one:

{
{0 ⊕ e(v1) ⊕ 0}1

p, {0 ⊕ e(v2) ⊕ 0}1
p, {0 ⊕ e(vn+1) ⊕ 0}2

p,

{0 ⊕ e(vn+2) ⊕ 0}2
p, . . . , {0 ⊕ e(v(q−1)n+1) ⊕ 0}q

p, {0 ⊕ e(v(q−1)n+2) ⊕ 0}q
p,

{0 ⊕
vnq+1

‖vnq+1‖
⊕ 0}q+1

p , . . . , {0 ⊕
vm

‖vm‖
⊕ 0}p

p, e
w,v
1 , . . . , ew,v

d(p−2)

}

Following the notation of Theorem 3.2 for each x = (x1, . . . , xm) ∈ V m, we
denote by Fx the linear subspace Fx = {x1}

⊥∩· · ·∩{xn}⊥×· · ·×{x2q−n+1}⊥∩
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· · · ∩ {x2q}
⊥ × {x2q+1}⊥ × · · · × {xm}⊥ ⊂ V p. Note that for each w ∈ B2

and v ∈ Uw, the orthonormal set e
w,v
1 , . . . , ew,v

d(p−2) is an orthonormal basis for
the linear space Fv. Finally, for any subset M of B2, let EM = {(x,y) : x ∈
M,y ∈ Fx} ⊂ V 2d+p and π : EM → M be the projection on first component,
that is π(x,y) = x.

Proposition 3.8. Suppose that M ⊂ B2 is a l-dimensional manifold. Then
(EM , π,M) is vector bundle, with l-dimensional base M , bundle projection
π, l + d(p − 2)-dimensional total space EM , and linear fibers of dimension
d(p− 2).

For each w = (w1, . . . , wm) ∈ M , let ψw : π−1(Uw) → Uw × R
d(p−2),

where,
ψw(v, z) = (v, (〈z, ew,v

1 〉, . . . , 〈z, ew,v
d(p−2)〉))

and φw : Uw × R
d(p−2) → π−1(Uw) where

φw(v, (c1, . . . , cd(p−2))) = (v,
d(p−2)∑

i=1

cie
w,v
i )

It is clear that φw and ψw are inverse to each other and hence they both are
bijections. Furthermore, both φw and ψw are continuous. Hence φw and ψw

are homeomorphisms. This proves that (EM , πM ,M) is a topological vector
bundle.

Proposition 3.9. There exists a finite collection of trivial vector bundles
(E2,j, πj , B2,j), with base manifolds B2,j, bundle projections πj, total spaces
E2,j = EB2,j

(compatible with the definition EM introduced earlier), and linear
fibers of dimension d(p−2), such that,

⋃
j B2,j = B2 and

⋃
j E2,j = E2,j. They

provide a finite cover of the vector bundle (E2, π, B2).

Proof. We want to show that we can find a finite cover of B2, {B2,j}
L
j=1, such

that each (Ej, π2,j , B2,j) is a trivial vector bundle. Note that the set

D = {(x1, . . . , xm) ∈ V
m such that ‖xi‖ = 1, ∀i ∈ [m]

and 〈xn(κ−1), xn(κ−1)+1〉 = 0, for every k ∈ [q]}

is compact, hence we can find a finite collection {wi}
K
i=1 ∈ D, such that

{Uwi
}K

i=1 is a cover of D.
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We also define the sets

Z = {x1, . . . , xm ∈ V : xn(κ−1) 6= λxn(κ−1)+1, ∀k ∈ [q], ∀λ ∈ R}

and

Ũw ={(u1, . . . , um) ∈ Z :

(e(u1), e(u2), u3, . . . , un, e(un+1), e(un+2), un+3, . . . , um) ∈ D}

i.e. Ũw contains all (v1, . . . , vm) ∈ Z such that if we replace vn(κ−1) and
vn(κ−1)+1 with e(vn(κ−1)) and e(vn(κ−1)+1) respectively, the transformed vector
belongs in D.

Note that the sets B2,i = Ũwi
∩ B2, 1 ≤ i ≤ K, collectively form a finite

cover of B2.
To demonstrate that the triple (E2, j, πj , B2, j) is a trivial vector bundle,

it suffices to find d(p− 2) independent sections. For any v = (v1, . . . , v2m) ∈
B2,j, recall that the following set of vectors forms an orthonormal basis:

{
{0 ⊕ e(v1) ⊕ 0}1

p, {0 ⊕ e(v2) ⊕ 0}1
p, {0 ⊕ e(v(n+1)) ⊕ 0}2

p,

{0 ⊕ e(vn+2) ⊕ 0}2
p, . . . , {0 ⊕ e(v(q−1)n+1) ⊕ 0}q

p, . . . , {0 ⊕ e(v(q−1)n+2) ⊕ 0}q
p,

{0 ⊕
vnq+1

‖vnq+1‖
⊕ 0}nq+1

p , . . . , {0 ⊕
vm

‖vm‖
⊕ 0}p

p, e
w,v
1 , . . . , ew,v

d(p−2)

}
.

Now let sl : B2,j → Ej, be defined by

sl(v) = (v, e
wj ,v
l ).

Then {sl}
d(p−2)
l=1 form a set of d(p − 2) independent global section in C2,j, so

(B2,j, πj , Ej) is a trivial vector bundle.

Proposition 3.10. For any ai, bi ∈ H∗
mi

, i ∈ [p]. F 2
a1,...,ap

b1,...,bp

is a nowhere

dense set with zero lebesgue measure.

Proof. Let P2,j : B2,j × R
d(p−2) → V

p where,

P2,j(v, c) =
d(p−2)∑

i=1

cie
wj ,v
i .
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We have already shown that P2,j is semialgebraic map as a linear combi-
nation of semialgebraic maps. We notice that

⋃

j

P2,j(B2,j × R
d(p−2)) ⊃ F

2
a1,...,ap

b1,...,bp

.

Because P2,j is semialgebraic and for every j, B2,j ×R
p(d−1) is a semialgebraic

set of dimension 2d−1−r+p(d−1) from Theorem 1.12 P2,j(B2,j×R
p(d−1)) is a

semialgebraic set of dimension ≤ 2d−1−r+p(d−1) and from Corollary 1.14
it is a nowhere dense set with zero Lebesgue measure.

Now, we still need to estimate the algebraic dimension of F 1
a1,...,ap

b1,...,bp

.

Lemma 3.11. For fixed ai, bi ∈ H∗
mi

, the set Γ1
a1,...,ap

b1,...,bp

is a closed subset of

R
q×(n−1) × V 2.

Proof. Let {(CCCn, xn, yn)} → (CCC, x, y) be a convergence sequence in Γ1
a1,...,ap

b1,...,bp

.

In order to prove our lemma we need to show that (CCC, x, y) is an element of
Γ1

a1,...,ap

b1,...,bp

. Because (CCCn, xn, yn) ∈ Γ1
a1,...,ap

b1,...,bp

ℓai,bi
((CCCn)i, xn, yn) = 0 , ∀i ∈ [q], ∀n ∈ N.

But ℓai,bi
is continuous function so ℓai,bi

(CCC, x, y) = 0, therefore

(CCC, x, y) ∈ Γ1
a1,...,ap

b1,...,bp

.

Lemma 3.12. For fixed group elements h1, . . . , h2p ∈ G, let the map fh1,...,h2p
:

R
q×(n−1)×V 2 → V p, defined by fh1,...,h2p

(CCC, x, y) = Uh1x−Uh2y, . . . , Uh2p−1x−
Uh2p

y. Then, the set fh1,...,h2p
(Γ1

a1,...,ap

b1,...,bp

) is a semialgebraic set of dimension at

most 2d− γn.

In order to prove Lemma 3.12 we to create a suitable partition of the set
Γ1

a1,...,ap

b1,...,bp

.

Note that the set Γ1
a1,...,ap

b1,...,bp

can be expressed as the disjoint union of the

following auxiliary sets.

Γ3
a1,...,ap

b1,...,bp

= Γ1
a1,...,ap

b1,...,bp

∩ (E
q×(n−1)
G × V

2)
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and
Γ4

a1,...,ap

b1,...,bp

= Γ1
a1,...,ap

b1,...,bp

\ Γ3
a1,...,ap

b1,...,bp

.

Proposition 3.13. Γ4
a1,...,ap

b1,...,bp

is a semialgebraic set of dimension (q(n−1)+d).

Proof. Recall that

Γ4
a1,...,ap

b1,...,bp

⊂ R
(q−1)×(n−1) × (ker(ℓa1,b1) ∩ (Rn−2 ×Ec

G × V
2))

= R
(q−1)×(n−1) ×

⋃

i∈[K+1]

(ker(ℓa1,b1) ∩ (Rn−2 × Λi × V
2)).

Notice that

ker(ℓa1,b1) ∩ (Rn−2 × Λi × V
2) ⊂

⊂ {(λλλ, λ, x, (Uh1 − λUh2)−1(Uh3 − λUh4)x) : λ ∈ Λi, x, y ∈ V , λλλ ∈ R
n−2} ∼=

∼= R
n−2 × {(λ, x, (Uh1 − λUh2)

−1(Uh3 − λUh4)x) : λ ∈ Λi, x, y ∈ V }.

Therefore is enough to show that the set

{(λ, x, (Uh1 − λUh2)−1(Uh3 − λUh4)x) : λ ∈ Λi, x, y ∈ V }

is a semialgebraic set of dimension at most d+ 1.
Let,

Ei = {(λ, x, (Uh1 − λUh2)−1(Uh3 − λUh4)x) : λ ∈ Λi, x, y ∈ V }

and denote by πi : Ei → Λi the projection π(λ, x, y) = λ. Also, consider the
functions φi

h
: Λi×R

d → ker(ℓh)∩Λi×V 2 and ψi
h

: ker(ℓh)∩Λi×V 2 → Λi×R
d

given respectively by

φi
h
(λ, x) = (λ, x, (Uh1 − λUh2)−1(Uh3 − λUh4)x)

and

ψi
a,b(λ, x, (Uh1 − λUh2)

−1(Uh3 − λUh4)x) = (λ, x).

Clearly, φi
a,b and ψi

a,b are inverses to one another, are both continuous, and
thus they are homeomorphisms. This tells us that (Ei, πi,Λi) is a topological
vector bundle.

Additionally, the map λ 7→ (Uh1 −λUh2)−1(Uh3 −λUh4) is rational as each
component is a rational function, hence the vector bundle is rational as well.
Therefore, Ei is a (d + 1)-dimensional semialgebraic set and consequently
Γ4

a1,...,ap

b1,...,bp

is a semialgebraic set of dimension (q(n− 1) + d).
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From Tarski-Seidenberg theorem and Corollary 4.2 of [13] we have that
fg1,...,g2p

(Γ4
a1,...,ap

b1,...,bp

) is semialgebraic set, of dimension at most (d+ 1).

Note that fh1,...,h2p
(Γ4

a1,...,ap

b1,...,bp

) is homogeneous, i.e. if

(x1, . . . , xp) ∈ fh1,...,h2p
(Γ4

a1,...,ap

b1,...,bp

)

then
(λx1, . . . , λxp) ∈ fh1,...,h2p

(Γ4
a1,...,ap

b1,...,bp

), ∀λ ∈ R

Thus we conclude that fh1,...,h2p
(Γ4

a1,...,ap

b1,...,bp

) ∩ S1(V p) is a semialgebraic set

of dimension at most d.

Proposition 3.14. Γ3
a1,...,ap

b1,...,bp

is a finite union of linear subspaces of V 2 of

dimension at most pn = 2d− γN−n+1.

Proof. From the fact that EG is a finite set we conclude that, dimension of
Γ3

a1,...,ap

b1,...,bp

is less than

max
ccc∈En−1

G
a,b∈H∗

dim{(x, y) ∈ V ×V : (Uh1−λUh2)x−(Uh2k+1
−λUh2k+1

)y = 0, ∀k ∈ [n−1]}.

Notice, however, that whenever (Uh1 − λUh2)x− (Uh2k+1
− λUh2k+2

)y = 0 the
vector (x, y) lies inside the kernel ker{uh1 − λUh2 | Uh2k+1

− λUh2k+2
}, ∀k ∈

[n− 1].
Therefore, we get that

max
λ∈EG

a,b∈H∗

min
k∈[n−1]

dim(ker{Uh1 − λUh2 | Uh2k+1
− λUh2k+2

})

= max
λ∈EG

a,b∈H∗

min
k∈[n−1]

{2d− rank[Uh1 − λUh2 | Uh2k+1
− λUh2k+2

]}

= 2d− min
λ∈EG

a,b∈H∗

max
k∈[n−1]

rank[Uh1 − λUh2 | Uh2k+1
− λUh2k+2

].

Next, we make the following two observations:

1. If we chose h1 = h2k+1 and h2 = h2k+2, then

rank[Uh1 − λUh2 | h2k+1 − λUh2k+1
] = rank[Uh1 − λUh2].
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2. rank[Uh1 − λUh2 ] = rank[Uh1h−1
2

− λUh2h−1
2

] = rank[Uh1h−1
2

− λ I].

So, we conclude that

min
c∈EG

max
k∈[n−1]

rank[Uh1 − λUh2 | Uh2k+1
− λUh2k+2

] =

min
H⊂G

|H|=n−1,Id /∈H

max
h∈H

rank[Uh − λ Id] = γN−n+1

Therefore, Γ3
a1,...,ap

b1,...,bp

is a finite union of linear subspaces of dimension at most

pn = 2d− γN−n+1.

Lemma 3.15. For fixed h1, . . . , h2p ∈ G, a, b the set

fh1,...,h2p
(Γ3

a1,...,ap

b1,...,bp

)

is a semialgebraic set of dimension at most pn.

Proof. Recall that the set

fh1,...,h2p
(Γ3

a1,...,ap

b1,...,bp

)

is a finite union of linear subspaces of V p of dimension at most 2d−γN−n+1 =
pn. Also because fh1,...,h2p

(Γ3
a1,...,ap

b1,...,bp

)) is an open set with respect to topology

induced by fh1,...,h2p
. We conclude that

fh1,...,h2p
(Γ3

a1,...,ap

b1,...,bp

)

is a semialgebraic set of dimension at most pn.

We have shown that fg1,...,g2p
(Γ3

a1,...,ap

b1,...,bp

)) is a semialgebraic set of dimension

at most pn. Notice now, that each of these manifolds is homogeneous, i.e. if

(x1, . . . , xp) ∈ fg1,...,g2p
(Γ3

a1,...,ap

b1,...,bp

))

then
(λx1, . . . , λxp) ∈ fg1,...,g2p

(Γ3
a1,...,ap

b1,...,bp

)), ∀λ ∈ R

Thus we conclude that fg1,...,g2p
(Γ3

a1,...,ap

b1,...,bp

)) ∩ S1(V p) is a semialgebraic set

of dimension at most pn − 1.
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Proposition 3.16. For any ai, bi ∈ H∗
mi

, i ∈ [p]. F 1
a1,...,ap

b1,...,bp

is a nowhere

dense set with zero lebesgue measure.

Proof. Let B3 =
(
fg1,...,g2p

(Γ3
a1,...,ap

b1,...,bp

)∪fg1,...,g2p
(Γ4

a1,...,ap

b1,...,bp

)
)

∩S1(V p). We showed

that B3 is semialgebraic set of dimension at most pn − 1.
Following the proof of Proposition 3.5 we construct a finite set {wj}M

j=1,

a finite cover {Bj}
M
j=1 of B and a map P2,j : B3,j × R

p(d−1) → V p by

P3,j(v, c) =
p(d−1)∑

i=1

cie
w

j ,v
i .

Observe that ⋃

j∈M

P3,j(B3,j × R
p(d−1)) ⊃ F

2
a1,...,ap

b1,...,bp

.

Notice that B3,j ×R
p(d−1) is a semialgebraic set of dimension at most pn −1+

p(d− 1). Because P3,j is semialgebraic, from theorem 1.12 we conclude that
P3,j(B3,j ×R

p(d−1)) is a semialgebraic set of dimension at most pn−1+p(d−1)
and because p ≥ pn =⇒ pn − 1 + p(d − 1) < pd from corollary 1.14 it is a
nowhere dense set with zero Lebesgue measure.

Proof. (Theorem 3.1.) For fixed p ≥ pn and S ∈ [p] × [N ], recall that the
set of p-tuples of vectors w = (w1, . . . , wp) such that the pair (w, S) fails to
induce an injective embedding Φw,S is denoted by FS.

Recall also that in order to prove that FS has zero Lebesgue measure
and is nowhere dense, it suffices to show the same for the set Fa1,...,ap

b1,...,bp

for any

ai, bi ∈ H∗
mi

, i ∈ [p].
In Chapter 3.1, we showed that Fa1,...,ap

b1,...,bp

= F 1
a1,...,ap

b1,...,bp

∪ F 2
a1,...,ap

b1,...,bp

. But if

p ≥ pn, Proposition 3.16 demonstrates that F 1
a1,...,ap

b1,...,bp

has zero measure and

is nowhere dense, and Proposition 3.10 demonstrates that F 2
a1,...,ap

b1,...,bp

has zero

measure and is nowhere dense. Therefore, Theorem 3.6 is proved.

Remark 3.17. In Theorem 3.6 we demonstrated that if we use more than
one element per Coorbit we need less than 2d windows for the construction
of an injective embedding. Unfortunately the dimension of the target space
can be greater than 2d but in [8] we showed that a generic linear projection
in R

2d preserves both injectivity and stability properties.
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Appendices

A Proof of Proposition 3.4

Proof. Consider the function r : Uw → V p given by

r(v) = (
v1

‖v1‖
, . . . ,

vp

‖vp‖
, ew,v

1 , . . . , ew,v
p(d−1)).

The first p components are obviously rational functions in v. For the compo-
nents mk(v) = ew,v

k , for k = 1, . . . , p(d − 1), we will use induction. Towards
this, observe that

mk(v) = ew

k −
p∑

j=1

1

‖vj‖2
〈{0 ⊕ vj ⊕ 0}j

p, e
w

k 〉{0 ⊕ vj ⊕ 0}j
p −

k−1∑

j=1

〈ew,v
j , ew

k 〉ew,v
j

For k = 1, m1(v) = t1(v)
‖t1(v)‖

, where

t1(v) =
〈{0 ⊕ vp

‖vp‖
⊕ 0}p

p, e
w

1 〉

‖{0 ⊕ vp

‖vp‖2 ⊕ 0}p
p‖2

v1 = 〈{0 ⊕
vp

‖vp‖
⊕ 0}p

p, e
w

1 〉)v1

=
1

‖vp‖2
〈{0 ⊕ vp ⊕ 0}p

p, e
w

1 〉v1.

The function 1
‖vp‖

is rational in v, and 〈{0 ⊕ vp ⊕ 0}p
p, e

w

1 〉 is linear so we

conclude that t1(v) is rational. Now, suppose that ∀j ∈ [k], mj is rational.
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Then,

mk+1(v) = ew

k+1 −
p∑

j=1

1

‖vj‖2
〈{0 ⊕ vj ⊕ 0}j

p, e
w

k+1〉{0 ⊕ vj ⊕ 0}j
p −

k∑

j=1

〈ew,v
j , ew

k 〉ew,v
j .

We have already shown that the first two terms of mk+1(v) are rational and
〈ew,v

j , ew

k 〉ew,v
j is rational in v as product of rational functions. Therefore, for

all k ∈ [p(d− 1)], mk(v) is a rational function. Consequently, φw and ψw are
rational diffeomorphisms.

Last, we need to show the transition functions are rationals as well. For
this, first fix w1,w2 ∈ M and U := Uw1 ∩ Uw2 6= ∅, and let σw1,w2 : U ×
R

p(d−1) → U ×R
p(d−1) be the map σw1,w2 = ψw1 ◦ φw2 . This induces another

map gw1,w2 : U → GL(p(d− 1)) via σw1,w2(v, c) = (v, gw1,w2(v)c), where c =
(ci)1≤i≤p(d−1). It suffices to show that the transition map gw1,w2 is rational.
In fact, gw1,w2 is given by

gw1,w2(v)c =




p(d−1)∑

i=1

〈ew2,v
i , ew1,v

k 〉ci




1≤k≤p(d−1)

Note that gw1,w2 represents a change of coordinates between two orthonor-
mal bases, and the Cross-Grammian of

{0 ⊕
v1

‖v1‖
⊕ 0}1

p, {0 ⊕
v2

‖v2‖
⊕ 0}2

p . . . , {0 ⊕
vp

‖vp‖
⊕ 0}p

p, e
w1,v
1 , . . . , ew1,v

p(d−1)

and

{0 ⊕
v1

‖v1‖
⊕ 0}1

p, {0 ⊕
v2

‖v2‖
⊕ 0}2

p, . . . , {0 ⊕
vp

‖vp‖
⊕ 0}p

p, e
w2,v
1 , . . . , ew2,v

p(d−1)

is a block-diagonal orthogonal matrix. But since the first p components of the
two sequences of vectors are the same, we conclude that the Cross-Grammian
of {e

w1,v
1 , . . . , ew1,v

p(d−1)} and {e
w2,v
1 , . . . , ew2,v

p(d−1)} is an orthogonal matrix. But
this is exactly gw1,w2(v) which in turn is rational map in v.

Note that we showed that for fixed i, j the map ewi,v
j : Uwi → V p is a

morphism which is a stronger statement than smoothness or analyticity.
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