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Abstract—In machine learning, classification
is usually seen as a function approximation
problem, where the goal is to learn a function
that maps input features to class labels. In
this paper, we propose a novel clustering and
classification framework inspired by the princi-
ples of signal separation. This approach enables
efficient identification of class supports, even
in the presence of overlapping distributions.
We validate our method on real-world hyper-
spectral datasets Salinas and Indian Pines.
The experimental results demonstrate that our
method is competitive with the state of the
art active learning algorithms by using a very
small subset of data set as training points.

I. Introduction
Classification is one of the oldest and most

extensively studied problems in machine learning.
Mathematically, the problem can be formulated
as follows: we consider data of the form {(x, y)},
where x ∈ D for some domain D (e.g., Euclidean
space or graph vertices), and y takes values in
a finite set, conveniently encoded as {1, . . . , K}
for some integer K ≥ 2. In the pair (x, y), y

is the class label of x, and the classification
function is defined as f(x) = y.

Over the past 50 years, machine learning
research has produced numerous algorithms for
estimating the class label of any data point x ∈ D,
all of which approximate the function f . This
perspective unifies the classification problem with
the classical problem of function approximation.

Approximation theory focuses on meth-
ods for estimating real-valued functions defined
on subsets of Euclidean space and analyzing
the intrinsic (non-statistical) errors associated
with such approximations. Typically, the target
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function f is assumed to be “smooth” on its
domain. Although the classification function is
inherently piecewise constant and discontinuous,
this is not a theoretical obstacle when classes are
well-separated. In such cases, extension theorems
by Stein [1] guarantee the existence of infinitely
differentiable extensions of piecewise constant
functions to the entire Euclidean space, even
preserving the magnitude of the derivatives.

In modern applications, classes often overlap,
and even when they are disjoint, their bound-
aries may lack smoothness, posing challenges for
classical function approximation techniques in
classification. Additionally, extension theorems
provide only existence results without offering
constructive methods to obtain such extensions,
particularly when class boundaries are unknown.
We propose that classification can be effectively
approached through an analogy to the problem
of signal separation in phased array antennas.

In this problem, one wants to determine a

linear combination µ =
K∑

k=1
akδωk

, (where δω

denotes the Dirac delta distribution supported
at ω), given the Fourier coefficients µ̂(ℓ) =
K∑

k=1
ak exp(−iℓωk) for finitely many values of ℓ,

say |ℓ| < n for some integer n. One way to solve
this problem is to consider a smooth, even, low
pass filter H supported on [−1, 1], and construct

σn(µ)(x) =
∑
ℓ∈Z

H(|ℓ|/n)µ̂(ℓ) exp(iℓx).

Under certain conditions, we have shown in
[2], [3], [4], [5] that σn(µ) ≈ µ, so that the set
{x : |σn(µ)(x)| > min

k
|ak|/2} splits into exactly

K clusters and the maxima of |σ(µ)(x)| in these



clusters occur very close to the points ωk. This
is because σn(µ) is a convolution of µ with the
kernel ΦT

n (y) =
∑

ℓ

H(|ℓ|/n) exp(iky), and this

kernel is highly localized when H is smooth.
To connect with classification, assume ak ≥

0 for all k with
∑

k

ak = 1. Suppose the data

belongs to classes {ω1, . . . , ωK}, where x = ωk

implies class label k. Here, µ represents the data
distribution, and each class k is sampled from
δωk

.
Generalizing, each class k corresponds to a dis-

tribution µk, making the overall data distribution
a convex combination:

µ∗ =
K∑

k=1
akµk.

The technical barriers in this viewpoint are the fol-
lowing: (1) the supports of µk may be continuous
rather than discrete, and (2) we observe random
samples from µ∗ instead of Fourier coefficients.

We propose a framework using localized kernels
based on Chebyshev polynomials to address
classification analogously to signal separation.
Our approach builds on [6] offering a solid theo-
retical basis. Though detailed proofs are omitted,
extensive experiments highlight the effectiveness
of our algorithm, further enhanced by an iterative
active learning process across diverse datasets.

II. Related Work
Active learning has been explored extensively

to improve learning efficiency. Settles [7] provides
a comprehensive survey of active learning strate-
gies, while Dasgupta [8] offers theoretical insights
into its effectiveness.

In super-resolution, Candès and Fernandez-
Granda [9] introduced convex optimization tech-
niques for recovering point sources, and Tang et
al. [10] applied compressed sensing to spectral
estimation.

Cloninger and Mhaskar [6] introduced cautious
active clustering using localized kernels based on
Hermite polynomials. Our approach requires a
smaller number of data points.

III. Theoretical Framework
Let µ∗ denote a probability measure supported

on X ⊂ Rq, representing the distribution of
a data set. With an appropriate stereographic

projection, we may in fact assume that X ⊂ Sq,
where Sq denotes the unit sphere of Rq+1. We
denote by B(x, r) the spherical cap of radius r,
centered at x ∈ Sq, and for any subset A ⊆ Sq,
write B(A, r) = ∪x∈AB(x, r). We say that µ∗ is
detectable if there exists α > 0 such that for
every x ∈ Sq,

µ∗(B(x, r) ≤ c1rα, for r > 0,

µ∗(B(x, r) ≥ c2rα, for 0 < r ≤ 1.
(1)

It is hoped that the support X should have lower
dimension than the ambient dimension q. The
first inequality is satisfied, for example, if X is
a submanifold of dimension α and µ∗ is its Rie-
mannian volume measure. The second inequality
above is analogous to the minimal magnitude of
the coefficients in the signal separation problem,
and plays the same role in our theory.

We assume that there are finitely many (K)
classes in the data set, with the k-th class arising
from a probability distribution µk. Thus, we
assume that µ∗ is a convex combination of µk’s.
Ideally, the support of the measures µk should
be disjoint. To allow for an overlap of class
boundaries, we assume instead that for any η > 0,
the support X of µ∗ is a disjoint union of Kη sets
Sk,η, separated by a threshold η > 0 and an extra
set, SKη+1 representing the overlaps. We assume
that µ∗(SKη+1)→ 0 as η → 0+. We will say that
µ∗ has a fine structure if it is detectable and
such a partition exists. Our goal is to separate
these sets.

Towards this goal, we will use the localized
polynomial defined on [−1, 1] by

Φn(cos θ) = 1+2
n−1∑
ℓ=1

H

(
ℓ

n

)
cos(ℓθ), θ ∈ [0, π].

(2)
where the degree n is a tunable parameter, H :
[0,∞)→ [0, 1] is infinitely differentiable and non-
increasing function, such that H(t) = 1 if t ∈
[0, 1/2] and H(t) = 0 if t ≥ 1. It is easy to prove
using the Poisson summation formula [3] that for
any S ≥ 2, there exists a constant c = c(H, S) > 0
such that

|Φn(cos θ)| ≤ cn

max(1, (nθ)S) , θ ∈ [0, π], n ≥ 2.

(3)
We note that if x, y ∈ Sq, then Φn(⟨x, y⟩) is a
spherical polynomial in both x and y. Since the



geodesic distance between x and y is given by
ρ(x, y) = arccos(⟨x, y⟩), Eqn. (3) becomes

|Φn(⟨x, y⟩)| ≤ cn

max(1, (nρ(x, y))S) , x, y ∈ Sq, n ≥ 2.

(4)

IV. Main results

In this section, we introduce the main theorems
of this paper. We start by defining our measure
estimator:

Fn,M (x) := 1
M

M∑
j=1

Φn(⟨x, xj⟩)2. (5)

We use this estimator to generate sets which
approximate the support of µ∗. In particular, we
define:

Gn(Θ) :=
{

x ∈ Sq
Fn,M (x) ≥ Θ max

1≤k≤M
Fn,M (xk)

}
. (6)

The following theorem is proved in [11]

Theorem 1. Let µ∗ be a probability measure
with a fine structure given by parameter η and
S ≥ q +2 be an integer. Let M ≥ c3nα log(n) and
{x1, x2, . . . , xM} be independent samples from µ∗.
There exists r(Θ) ∼ Θ−1/(S−α) such that with
probability at least 1− c4/M c5 we have

X ⊆ Gn(Θ) ⊆ B(X, r(Θ)/n). (7)

Moreover, if n > 2r(Θ)/η there exists a partition
{Gk,η,n(Θ)}Kη+1

k=1 of Gn(Θ) with the following
properties:

dist(Gj,η,n(Θ),Gk,η,n(Θ)) ≥ η, j ̸= k, (8)

and

Sk,η ⊆ Gk,η,n(Θ) ⊆ B(Sk,η, r(Θ)/n). (9)

Brief Overview of Our Algorithm

The Salinas and Indian Pines hyperspec-
tral datasets are well-known benchmarks in
image analysis, commonly used to assess clas-
sification algorithms due to their rich spec-
tral data. The Salinas dataset, captured by the
AVIRIS over California’s Salinas Valley, pro-
vides high spatial resolution with 3.7-meter pixels
and 224 spectral bands covering the 0.4–2.5 µm
range. It mainly features agricultural areas, mak-
ing it ideal for land cover and vegetation clas-
sification. For our experiments, we use the first

10 classes out of 13, selecting 50% of the data
from each class randomly.

The Indian Pines dataset, also from AVIRIS
over northwestern Indiana, consists of a
145× 145 pixel grid with 220 spectral bands. It
poses a classification challenge due to spectral
overlap among different land covers. We analyze
a 57× 41 pixel subset containing corn-notill,
stone-steel-towers, woods, soybean-mintil,
and grass-trees, with each pixel having
220 spectral features.

Our algorithm, implements Theorem 1 with
the following modification. We use an iterative
refinement process that optimizes clustering
by dynamically adjusting kernel parameters and
thresholds, validated on real-world datasets like
Salinas and Indian Pines.

We first apply PCA to reduce data from Rd to
Rd′

(d′ < d), preserving maximum variance. The
transformed data is normalized and projected
onto the unit hypersphere Sq.

Next, we compute the angle matrix:

Aij = arccos(⟨xi, xj⟩),

quantifying angular distances between xi, xj ∈
Sq.

We build an adjacency graph G = (V, E)
with edges:

E = {(xi, xj) : Aij < η},

and identify connected components {Cn,ℓ}. The
refinement process adjusts kernel degree n and
threshold Θ to stabilize clustering. Class supports
are approximated by Gn(Θ).

For uncertain components, we iteratively query
the most confident points, propagate labels within
components, and update n and Θ until labeling
stabilizes.

In post-processing, we use the Witness
Function Method as in [12] to propagates labels
except instead of Hermite based polynomial ker-
nels in [12] we use the following kernel introduce
in [13]: The matrix Φn,q is defined as:

Φn,q(x) =
n−1∑
k=0

H

(
k

n

)
P

(
q
2 −1,

q
2 −1

)
k

(1) P

(
q
2 −1,

q
2 −1

)
k

(x)
Nk

where P
(α,β)
k (x) are Jacobi polynomials with

α = β = q

2 − 1, and the normalization factor Nk



is:

Nk = 2α+β+1 Γ(k + α + 1)Γ(k + β + 1)
Γ(k + 1)Γ(k + α + β + 1)

·
1

2k + α + β + 1

ŷ(x) = arg max
k

∑
xi∈Ak

Φn,q(⟨x, xi⟩),

where Ak denotes confidently labeled points of
class k.

As shown in Figure 1, our algorithm achieves
a success rate of 96.04% using only 3% of the
data as queried points. This performance is
competitive with state-of-the-art active learning
algorithms for the Salinas dataset (see [6]).

Fig. 1. Salinas dataset.

For the more challenging Indian Pines sub-
set (see Figure 2), our algorithm achieves a
success rate of 81.46% using only 7.5% of the
data as queried points. This performance is also
competitive with state-of-the-art active learning
algorithms for the Salinas dataset (see [6]).

Fig. 2. Indian Pines dataset.

Algorithm 1: Signal Classification via
Active learning (SCALe)
Input: Dataset X ⊂ Rd, kernel degree n,

threshold parameter Θ, adjacency
parameter η, step size ηstep

Output: Predicted labels ŷ for all points
in X

A ← ∅ ;
Apply PCA transformation Rd → Rdmin ;
Project data onto unit hypersphere Sq ;
Compute matrix Aij = arccos(⟨xi, xj⟩) ;
Construct kernel matrix: Φn(⟨xi, xj⟩)2 ;
Prune values from matrix by Gn(Θ) ;
while η ≤ ηmax do

Build adjacency graph G = (V, E)
where E = {(xi, xj) : Aij < η} ;

Identify connected components
Cη,ℓ}Kn

ℓ=1 ;
for ℓ = 1 to Kn do

if Cη,ℓ ∩ A = ∅ then

xi ← argmax
x∈Cη,ℓ

M∑
j=1

Φn(⟨x, xj⟩)2 ;

A ← A∪ {(xi, f(xi))} ;
ŷ(xj)← f(xi) for all xj ∈ Cη,ℓ ;

else if ∀xj ∈ Cη,ℓ ∩ A, f(xj) = cℓ

then
ŷ(xj)← cℓ for all xj ∈ Cη,ℓ ;

η ← η + ηstep ;
Identify uncertain points
Cuncertain ← X \

⋃
η,ℓ

Cη,ℓ ;

Ak ← {xj : ŷ(xj) = k} ;
foreach xj ∈ Cuncertain do

ŷ(xj)← argmax
k

∑
xi∈Ak

Φn,q(⟨xj , xi⟩)

return ŷ

V. Conclusion
In this paper, we introduced an active learning

algorithm inspired by signal separation principles,
demonstrating competitive performance on hy-
perspectral datasets with minimal labeled data.
Our approach effectively identifies class supports
even in the presence of overlapping distribu-
tions.Future work will focus on evaluating our
algorithm’s generalizability across datasets from
domains like medical imaging, remote sensing,
and social networks to assess its adaptability to
different classification tasks.
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